A UNIFYING APPROXIMATION SCHEME FOR DENSITY FUNCTIONAL
THEORIES: A FORCE BALANCE BASED APPROACH

Dissertation
zur Erlangung des Doktorgrades
an der Fakultat fiir Mathematik, Informatik und Naturwissenschaften
Fachbereich Physik der Universitdit Hamburg

Vorgelegt von:

Mary-Leena Martine Tchenkoue Djouom

Hamburg 2021



EIDESSTATTLICHE VERSICHERUNG

Hiermit versichere ich an Eides statt, die vorliegende Dissertationsschrift selbst
verfasst und keine anderen als die angegebenen Hilfsmittel und Quellen benutzt
zu haben. Die eingereichte schriftliche Fassung entspricht der auf dem elektronis-
chen Speichermedium. Die Dissertation wurde in der vorgelegten oder einer dhn-
lichen Form nicht schon einmal in einem friiheren Promotionsverfahren angenom-

men oder als ungentigend beurteilt.

Hamburg, den 29. Januar 2021

Mary-Leena Tchenkoue

Gutachter der Dissertation:

Zusammensetzung der Priifungskommission:

Vorsitzende der Priifungskommission:
Vorgelegt am:

Tag der wissenschaftlichen Aussprache:

Prof. Dr. Angel Rubio
Dr. Michael Ruggenthaler

Prof. Dr. Angel Rubio

Dr. Michael Ruggenthaler
Prof. Dr. Nina Rohringer
Prof. Dr. Michael Riibhausen
Prof. Dr. Carsten Ullrich
Prof. Dr. Michael Riibhausen

29. Januar 2021

19. Mérz 2021

Vorsitzender des  Fach-Promotionsausschusses Prof. Dr. Giinter Hans Walter

Physik :
Leiter des Fachbereichs Physik:

Dekan der Fakultat MIN:

ii

Sigl
Prof. Dr. Wolfgang Hansen

Prof. Dr. Heinrich Graener



ABSTRACT

First-principle methods as a way of understanding various fundamental phenom-
ena that occur in nature is an active field of research in condensed matter physics
and other related fields. There is great interest in the study of how a system or a
property changes when an external perturbation is applied to it, say, by switching
on a magnetic field or probing the system with a laser. Many successful theoretical
developments have been made over the years to specifically treat these different
situations. However using one of these theories out of its assigned setting, by
construction, does not always guarantee a suitable outcome and some interesting
features may not be captured. This is partly due to the approximations that are
used in these methods which are geared to only specific external perturbations or
properties. It is therefore of importance to have a theory that can, in a consistent
way, treat these various settings and allow for the qualitative study of the changes
that occur when different external stimuli (magnetic fields, lasers,...) are applied
to a system. We propose here such an approach that contains all the ingredients
necessary to perform such a qualitative study.

In this thesis we present a unifying scheme to determine exchange correlation
potentials in density and current density functional theories including vector po-
tentials. The standard energy-based approach to determine functionals is not used
here. Instead this approach relies on the equations of motion of particular cur-
rent densities and is viable both for the ground state and the time-dependent
setting. We aim at directly approximating the density-potential mapping thereby
avoiding subtleties that arise from functional differentiability and also the costly
optimized effective potential procedure of orbital-dependent energy functionals.
We then show that the different density functional theories are connected through
these equations of motion and demonstrate this for a local-exchange approxima-
tion. We show how these exchange-type approximations reduce to the usual local
density approximation in the case of a homogeneous system. We highlight what
is not captured when approximations for simple settings are used in more com-
plex ones. In addition, these equations of motion provide a way to numerically
construct density-potential mappings for different density functional theories and
we show this particularly for a ground state lattice setting including the Peierl’s
phase.

All these show that this equation-of-motion-based approach bears many inter-
esting advantages and provides a new path for approximations in density func-
tional theories. Moreover, it sets a path for a more complete understanding of the
properties of molecules or solids subject to different external stimuli.
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ZUSAMMENFASSUNG

Ab-inition Methoden zum Verstdndnis grundlegender Phanomene, die in der Natur
auftreten, sind ein aktives Forschungsfeld in der Festkorperphysik und anderen

verwandten Bereichen. Eine der Hauptfragestellungen hierbei ist, wie sich ein

System und seine Eigenschaften dndern, wenn sich eine externe Grofle dndert,

beispielsweise indem ein Magnetfeld eingeschaltet oder das System mit einem

Laser getrieben wird. Im Laufe der Jahre wurden viele erfolgreiche Theorien en-
twickelt, um spezifische solche Situationen zu behandeln. Die Verwendung dieser

Theorien in anderen Situationen fiihrt jedoch hdufig nicht zu einem zufrieden-
stellenden Ergebnis, da wichtige Merkmale nicht erfasst werden. Dies ist teilweise

auf die Ndherungen zuriickzufiihren, die bei diesen Methoden verwendet werden,

und welche nur fiir spezielle externe Storungen oder spezifische Eigenschaften

zuldssig sind. Es ist daher wichtig, eine Theorie zu haben, die alle Spezialfélle auf

konsistente Art und Weise behandelt. Wir stellen einer Herangehensweise vor, die

alle Bestandteile enthilt, die zur Durchfiihrung einer solchen qualitativen Studie

erforderlich sind.

Wir stellen in dieser Arbeit ein einheitliches Schema von Néaherungen zur Bes-
timmung von Austauschkorrelationspotentialen (einschliefSlich Vektorpotentialen)
in Dichte- und Stromdichtefunktionaltheorien vor. Der standardméfiige energiebasierte
Ansatz zur Bestimmung von Funktionalen wird hier nicht verwendet. Stattdessen
beruht dieser Ansatz auf den Bewegungsgleichungen bestimmter Stromdichten
und ist sowohl fiir den Grundzustand als auch fiir die zeitabhidngige Situation
gliltig. In dem Ansatz wollen wir die Dichte-Potential-Abbildung direkt approx-
imieren, wodurch Problema vermieden werden, die sich aus der funktionalen Dif-
ferenzierbarkeit ergeben, sowie das kostspielige optimierte effektive Potentialver-
fahren von orbitalabhéngigen Energiefunktionalen. Wir zeigen dann, dass die ver-
schiedenen Dichtefunktionaltheorien durch diese Bewegungsgleichungen verbun-
den sind, und demonstrieren dies fiir eine lokale Austauschndherung. Wir zeigen,
wie sich diese Ndherungen vom Austauschtyp bei einem homogenen System auf
die tibliche lokale-Dichte-Ndherung reduzieren. Durch das Anwenden dieser kom-
plexeren Ndherungen auf einfachere Systeme ergeben sich Effekte, die in den an-
deren Theorien nicht sichtbar werden. Dartiber hinaus bieten diese Bewegungsgle-
ichungen eine Moglichkeit, Dichte-Potential-Abbildungen fiir verschiedene Dichte-
funktionaltheorien numerisch zu untersuchen, und wir zeigen dies insbesondere
fiir ein simplest System realisiert auf einem Gitter im Grundzustand welches eine
Peierl-Phase enthilt.

All dies zeigt, dass dieser auf Bewegungsgleichungen basierende Ansatz viele
interessante Vorteile bietet und einen neuen Weg fiir Approximationen in Dichte-
funktionaltheorien bietet. Dariiber hinaus zeigt die neue Naherungstheorie wie



man die Untersuchung von Eigenschaften von Molekiilen und Festkorpern unter
dem Einflufd von verschiedenen externen Storungen vereinheitlichen kann.
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INTRODUCTION

The electronic many-body problem is ubiquitous in modern quantum physics [1].
It is important for atoms, molecules and materials science and determines many
structural, transport, optoelectronic and other important properties of these sys-
tems, such as absorption and emission spectra, chemical bonds or their conductive
behavior. Yet it is also one of the hardest problems. The reason being that while we
have an equation that potentially informs us about all the details of the electronic
state of a microscopic system — the interacting multi-electron Schrodinger equa-
tion — finding solutions to this equation is extremely hard. Since there are only a
handful of analytic solutions known, most famously for the hydrogen atom [2],
we have to resort to numerical approaches. However, a straightforward numerical
solution is prohibitively expensive. The reason being the so-called “exponential
wall” [3], which indicates the exponential increase in dimension of the problem
with the number of particles. Since the dimension of the problem correlates with
the time it takes a computer to solve the problem, only very small systems can be
solved within a reasonable time. The problem gets even harder once we consider
explicitly time-dependent problems [4] or systems under influence of magnetic
fields [5]. For instance, for strongly driven systems, where perturbation theory is
no longer applicable, the solution of the helium atom is already extremely chal-
lenging [6, 7]. Therefore many approximation schemes or even full reformulations
of the many-electron problem have been developed over the years [8].

Most prominent among these is ground state density functional theory (DFT) [9].
It relies on the fact that the ground state of the interacting multi-electron Schrodinger
equation can be found by minimizing the total energy of the system. This mini-
mization, however, can be performed with the density of the total system instead
of with the full multi-electron wavefunction [10]. And a minimization with just
the density, which corresponds to the locally resolved charge density of the sys-
tem, can be done numerically very efficiently. The price we pay is that we no
longer know the form of the energy expression we need to minimize exactly. Only
for specifically simple systems we can express the energy in terms of the density
alone. So in general we need to approximate these energy expressions.

The approximation of these energy expressions can be done quite accurately
with an idea that Kohn and Sham introduced [11]. Indeed, if we perform the
minimization with respect to the density by using the simplest non-trivial wave-
functions — non-interacting Slater determinants — as representatives, we can use
the respective non-interacting energy expressions as a first guess. Only small mod-
ifications of the non-interacting energy are enough to get reasonable agreements
between approximate DFT predictions and experimental values [9]. The solution



INTRODUCTION

of these modified Schrodinger equations — the Kohn-Sham (KS) equations — is nu-
merically feasible for very large systems and hence it became the workhorse of
modern electronic structure theory. Yet the most simple of these approximations
are also known to have several limitations. This is true especially for strongly cor-
related systems, that is, the interacting system is very different to a non-interacting
system and thus the first guess is quite bad [12]. But also other situations are chal-
lenging for simple DFT approximations [13].

Our focus in the following will, however, not be to provide more accurate DFT
approximations for the ground state (although we highlight a possible interest-
ing and appealing way in the course of this thesis). Although this is the most
important and most widely considered case, there are other interesting situa-
tions to which DFT has been extended. It will be the connection between these
extensions, approximation schemes within these extensions and also how these
approximation schemes are connected. Of these extensions the most important
one is time-dependent density functional theory (TDDFT) [14]. Although it for-
mally looks very similar to ground state DFT it is not connected to the minimum
energy principle. Instead it rests upon the equation of motion (EOM) of the den-
sity and the current density. Nevertheless, using these EOMs we can also recast
the time-dependent multi-electron Schrodinger equation in terms of a simplified
KS equation and get access to non-equilibrium situations for complex system. To
find the form of these effective potentials, we instead of modifying the energy
of the non-interacting problem, need to modify the forces of the non-interacting
system [15]. Yet this fact is almost never used but instead one adopts approxima-
tions from ground state DFT derived from the minimum-energy principle. This
procedure — known as the adiabatic approximation — introduces a further level
of approximation and the resulting equations are known to have further deficien-
cies [16]. A different situation is the case of magnetic fields, for which either a
static version similar to DFT can be formulated or a time-dependent formulation
similar to TDDFT is available. But even in these more involved situations it is
mainly the approximations from ground state DFT that are employed, accordingly
we expect that they are even less reliable.

In this thesis we want to present a remedy for this situation by introducing a
novel approximation scheme that unifies all these different versions of DFT. The
main idea is that also for the ground state (with or without the magnetic field)
the exact solutions need to fulfill the EOMs of the time-dependent formulations
and thus we can use the EOMs to provide approximations. This result highlights
that an energy minimum corresponds to a force balance between all the particles.
Since we will show that all the these different DFTs are connected via the same
EOMs, we can connect approximations from different DFTs. We highlight this for a
local-exchange approximation, where we use a Slater determinant to approximate
the interaction forces. In this way we highlight how DFTs from more complex sit-
uations, e.g., including the magnetic field, can be used consistently for simpler
situations, e.g., without magnetic field. On the other hand we show what is not
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captured when applying approximations from simpler situations to more complex
ones. Since we do no longer have an energy expression that we minimize, the pro-
posed local-exchange approximation is not straightforwardly connected to stan-
dard energy-based approximations. We, however, demonstrate that it reduces to
known approximations for a homogeneous setting. Finally we highlight a further
advantage of the EOM-based approach to DFTs. The EOMs allow for a numerical
construction of the basic mapping theorems of the different DFT settings. This
holds not only for the time-dependent case [15], but we demonstrate that we can
also use it as a novel way to investigate the mappings for static situations. We do so
specifically in the case of lattice DFTs where there is less knowledge about the ex-
istence and properties of these mappings. All of the above shows that EOM-based
approches to DFTs have many appealing advantages and we hope that it provides
novel impulses in the ongoing quest for ever more accurate DFT approximations.






THEORETICAL BACKGROUND

In this chapter we introduce the most important situations that describe many-
electron systems subject to different electromagnetic fields and their correspond-
ing density-functional reformulations. This builds the basis of our later considera-
tions where we connect all of the different density-functional theories (DFTs) via
general equations of motion (EOMs). We divide the chapter into four parts that
correspond to different physical situations. The first part (Sec. 2.1) is dedicated to
the description of the ground state of many-electron systems, such as atoms and
molecules in free space. So the electrons only experience, besides their mutual
Coulomb interaction, the attractive scalar potential of the nuclei. This is the most
widely investigated situation. We then discuss the Hartree-Fock approximation of
the static Schrodinger equation in Sec. 2.1.1 before introducing in detail ground
state DFT in Sec. 2.1.2. In the next part (Sec. 2.2) we consider the case when the elec-
tronic system is time-dependent and subject to a further general time-dependent
scalar potential, such as a laser pulse in dipole approximation. We discuss the time-
dependent Schrodinger equation and focus then on its reformulation in terms of
TDDEFT in Sec. 2.2.1. We then consider the situation where the many-electron sys-
tem is influenced by a static magnetic field and its new ground state (Sec. 2.3). For
this we investigate the static magnetic Schrodinger equation and discuss reformu-
lations based on the current density in Sec. 2.3.1. Finally in Sec. 2.4 we look at the
most general case, where a system is perturbed by a general time-dependent elec-
tromagnetic field, that is, an atom or molecule that is subject to a time-dependent
magnetic and electric field. We consider the time-dependent magnetic Schrodinger
equation before talking about its density-functional reformulation in Sec. 2.4.1.

2.1 STATIC SCHRODINGER EQUATION

In this section and in the rest of the work we always work within the Born-
Oppenheimer approximation [17] and only investigate the electronic properties of
microscopic systems for fixed ion positions. That is, we treat the nuclei as classical
particles that are clamped, and only the electrons are treated quantum mechani-
cally. We further use atomic units (au) throughout the work(ii = e = m = % =
1 [18]). We here focus on the ground state of microscopic systems in free space
and thus the electrons are only subject to the attractive potentials of the (classical)

nuclei. The Hamiltonian for this case takes the form

A=T+V+W. (1)
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Here,

N

Z (2)
i=1

is the kinetic-energy operator of the N electrons and V; is the gradient operator
acting on the ith particle coordinate. The external potential due to nuclei is

I\) \

N
7= Y te(r), 6)
i=1

with eyt (r) = — Eﬁil Zy/|Ry —r| and Z, the charge as well as R, the fixed posi-
tion of the nucleus «. Finally, the electron-electron interaction energy operator is
given by

W=_ Z (Jt; —15]), (4)
#

where w(|r; —r;|) = 1/|r; — 1;| is the electrostatic Coulomb interaction.
We then want to find the ground state of the above Hamiltonian, which is the
lowest energy eigenstate that fulfills the static Schrodinger equation

H‘Po(l‘lUl,...,l‘NO'N) = EO‘Y()(I‘lo'l,...,rNO'N). (5)

Here ¥ (r101,...,rn0N) is an N-electron wavefunction which depends not only
on the N particle coordinates but also on the spin o € {1, ]} of each particle. Since
electrons are spin-1/2 particles they are fermions and thus they are described by
anti-symmetric wavefunctions [19]. That is, if we exchange two spin-space coordi-
nates (r;0;) = x; <+ (rj0;) = x; then we have

Yo(xi, ..o Xip ooy Xy XN) = = Yo (X1, Xy, Xy o oo XN). (6)

This implies the Pauli exclusion principle [20]. That is, two electrons cannot oc-
cupy the same quantum state. In the following, this symmetry is always implied
but we will not always explicitly indicate the dependence on space and spin. To
solve Eq. (5) uniquely we need to impose further conditions. Besides the fermionic
symmetry we only allow wavefunctions that decay sufficiently fast to infinity, such
that they are normalizable. That is, we restrict to wavefunctions ¥ that obey

(P[¥) = / Y Wxidx, . .. dxy = 1. )

Here [dx;...dxy implies integration over the 3N spatial coordinates and sum-
mation over N spin coordinates. Furthermore, the wavefunctions should be well-
behaved at every point in space [15]. These conditions allow us by using the defi-
nition of expectation values of a Hermitean operator O

(0) = (¥|0[¥) = / Y OWdx; ... dxy 8)
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to find the ground state by the variational principle [2]
Ey = min(¥|A[¥) ©

The ground state is therefore the one state that minimizes the expectation value of
the total energy operator H given in Eq. (1). This result is especially important for
the formulation of the static Schrédinger problem in terms of a density-functional
theory.

Although in principle we now have everything we need to determine the ground
state of a given Hamiltonian, in practice this is a very challenging task. In principle
we just need to vary over all wavefunctions that fulfill the above conditions and
once we have found the one with the lowest energy, we are done (we exclude here
and in the following the possibility of non-normalizable scattering states such as
when vey(r) = 0). But due to the large dimension of the configuration space (3N
from the space coordinates and multiplied by two due to the spin) it becomes
very hard to parameterize the many-body wavefunction. The parameters grow
exponentially with the number of electrons. This fact is called the ”"exponential
wall” [3] and makes a direct numerical solution of the many-body Schrodinger
equation impossible in practice when more than a few electrons are treated. This
can already be seen from the shear size of data that one would need to store. For
instance, for N = 10 and a small real-space grid (we represent R by just a few
discrete points, say 10) of 10° for each particle, we have about 10* numbers to
store (ignoring symmetries). This is more than a yotta-byte of data.

However, a number of methods have been devised over the years to tackle this
quantum "exponential wall" problem. Here we only look into ab initio or first-
principles methods. For these methods only the fundamental Hamiltonian of the
system with physical constants and mathematical principles are used to construct
approximations. We do not consider simplified models of the original problem. Ab
initio methods can be roughly divided into two categories:

1. In a first approach, approximations are made directly at the level of the wave-
function. We will briefly introduce one of these methods, namely Hartree-Fock
theory, but many other wavefunction methods exist(also for finite systems)
such as configuration interaction expansions [21], quantum Monte-Carlo ap-
proaches [22—25], many-body perturbation theory [26, 27] and tensor net-
works [28, 29]. Most of these methods still remain numerically costly and
work best for rather small systems.

2. A second approach aims at using an object of much lower-dimension than
the wavefunction that still holds all necessary information about the system.
In the following, we will consider ground state DFT, which bases everything
on the one-particle density. Once more complex situations are investigated,
other objects become necessary, e.g., the current for the case of magnetic
fields (see Sec. 2.3.1). Other approaches consider from the start more com-
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plex objects like the reduced density matrix [9, 30, 31] or the single-particle
Green’s function [26, 32, 33]

2.1.1  Wavefunction approximations: the Hartree-Fock theory

Let us first consider the simplest wavefunction-based theory, which is called Hartree-
Fock theory. Many concepts introduced here will become important later in this
thesis. In Hartree-Fock theory [34] the many-body wavefunction ¥ is assumed to
be a single Slater determinant of N orthonormal spin orbitals ¢;(rc)

. P1(rior) ... Pn(rion)
D = = det : : . (10)

VN!

4)1 (rNO'N) . (PN(I‘N(TN)

Each spin orbital can be written as a product of a spatial and a spin wavefunction,
i.e., ¢i(x) = ¢i(r)xi(c). We will always denote determinantal wavefunctions by ®
to differentiate them from the correlated N-electron wavefunction ¥. The N spin
orbitals are obtained by invoking the variational principle for the ground state (see
Eq. (9)) while restricting the form of the wavefunction to a Slater determinant [8].
Therefore by doing this minimization with respect to the spin orbitals, which obey
the orthonormalization conditions

/4’7 (x)<pj(x)dx = Jij, (11)

the many-body problem is reduced to a set of N-coupled non-linear differential
equations

N
F(Pi(X) = Zeijqbi(x). (12)
j=1
The Fock operator F is an effective one-electron operator defined as

N 1
F= —EVZ + Vext +§, (13)

where the Coulomb-exchange operator ¢(x1) given by

N

g=j-k (14)

represents the average potential which is felt by the ith electron due to the presence
of the other electrons. The Hartree and exchange operators are

. N
Jox ) = X2 [ 4 )i 0) = F i (15)
R N
Rox)f ) = X [ 6 )G i) (16)
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respectively, where f(x;) is an arbitrary function. The Hartree-Fock equations (13)
must be solved through an iterative scheme, since the orbitals ¢; that are solutions
to the problem appear in the Fock operator F. This scheme is known as the self-
consistent-field (SCF) method [8, 35]. The basic idea behind this scheme is simple:
From an initial guess for the spin orbitals, the average potential ¢ experienced by
each electron is calculated. Then the eigenvalue equation (13) is solved to get a
new set of spin orbitals. With these new set of spin orbitals, one calculates again
¢ and the procedure is repeated until self-consistency is attained. That is, once
we have attained self-consistency ¢ does no longer change by the above proce-
dure. The Slater determinant obtained from these spin orbitals is the Hartree-Fock
ground-state wavefunction. Every observable of the system can then be obtained
as expectation values with respect to this wavefunction.

The Hartree-Fock method is simple, however, the wavefunction does not take
into account the correlation resulting from the interaction between electrons. To
take the Coulomb correlation into account, one needs to go beyond the single
Slater representation. Methods developed to handle this belong to the well known
post Hartree-Fock methods [21, 36]. Although present day computation power
makes the application of these correlated wavefunction-based ab initio methods
possible, the algebraic formulation of these various many-body methods formally
scale as ~ M?*, with M being the number of basis states. While it is difficult to
properly assess the exact range of applicability of these methods, some systems of
interest will most certainly be beyond their reach.

An entirely different approach with an optimum scaling behaviour is therefore
needed to handle large systems. The question is then whether there exists some
kind of effective non-interacting approach involving only single-particle operators
which could capture the fully interacting many-body problem in a more complete
manner, while still accounting for correlation. DFT [9], which is the focus of this
thesis, is indeed such an approach.

2.1.2  Density Functional Theory

We saw that the complexity of the wavefunction scales exponentially with the
number of electrons. Therefore most systems of interest, since they contain many
electrons, will become computationally impossible to treat for wavefunction-based
methods. On the other hand, we note that the Hamiltonian H consists of one-body
(T, V) or at most two-body (W) operators, regardless of the size of the system.
Thus one may pose the question whether it is really necessary to use the compli-
cated wavefunction to compute the energy and other properties of the system. Is it
possible that the wavefunction contains way more information explicitly than one
actually needs such that a less complicated quantity is still sufficient to investigate
most properties of the system? This is indeed the case. The one-particle density

no(r) = N /dxz...de‘I’S(xl,xz,...,xN)‘I’o(xl,xz,...,xN), (17)
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where we have summed over all spins and we use also in the following that the
first coordinate x; = (roq), is such a quantity. Due to the anti-symmetrization of
the wavefunction, all coordinates are equivalent and we use the first one in the
following for convenience. Unlike the wavefunction, the density depends only on
three coordinates independently of the size (number of electrons) of the system.
This makes the density a computationally manageable quantity to use in order to
describe a physical system. DFT tells us that the density contains implicitly all the
information of the many-body wavefunction.

Already before the formal definition of DFT, attempts were made to use the
density instead of the wavefunction as a descriptor of many-body systems. The
earliest attempts actually date back to works of Thomas and Fermi, 1927 [37,
38]. To briefly introduce their approach we start by stating that, originally, it is
a quantum statistical formulation in which only the kinetic energy is taken into
account while the nuclear-electron and electron-electron contributions are treated
completely classically. With this the Thomas-Fermi model leads to a simple ex-
pression for the kinetic energy based on the homogeneous electron gas [9], which
is a simple model of a system with constant electron density. Together with the
classical expressions for the nuclear-electron and electron-electron contributions,
the Thomas-Fermi energy is given as

Exgln] = 13()(3n2)2/3/ 5/3 (¢ / ) gy +2// ne)nr2) 4 e (18)

where the first term is the Thomas-Fermi kinetic energy Ttg[n]. To determine the
right density that goes in Eq. (18), the Thomas-Fermi model makes use of the
variational principle and minimizes the energy Erg[n]. The accuracy of this model
to describe atoms or molecules is limited due to the fact that the kinetic-energy
expression Trp[n] is only approximate and also exchange and correlation effects
are completely neglected. However, this was an important first step towards rep-
resenting a quantum system in terms of the density 7(r) only.

Despite the numerous modifications and improvements made to the Thomas-
Fermi theory [39—42] the method remained rather inaccurate for most applications.

The Hohenberg-Kohn Theorem

This changed with the landmark paper by Hohenberg and Kohn [10] and the intro-
duction of DFT, which showed how to make the approaches of Thomas and Fermi
formally exact. Modern DFT rests upon two ideas put forward in this landmark
paper. Firstly, Hohenberg and Kohn showed that one can exchange under certain
conditions the wavefunction as a descriptor of the many-body system by only its
density. In a more precise form, the first Hohenberg-Kohn theorem reads [16]

Theorem 1 In a finite, interacting N-electron system with a given particle-particle inter-
action, there exists a one-to-one correspondence between the external potential vex(r) and
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the ground state density no(r). In other words, the external potential v[ng|(x) (up to an
arbitrary additive constant) is a unique functional of the ground state density.

More formally we can express this result in terms of a one-to-one (bijective) map-
ping between all external potentials that allow for a non-degenerate ground state,
all non-degenerate ground state wavefunctions and all ground state densities

1:1 1:1
Vext (T) < Yy < no(r). (19)

This shows that in principle we can express the wavefunction by its density Yo =
Y¥o[no] and thus any observable described by an operator O becomes a functional
of the density 1. Again, more formally

Yo = To[ﬂo] - O[Tlo] = <‘F0[1‘lo”é“‘lj0 [Tlo]). (20)

In addition to the one-to-one mapping between ground state densities, wavefunc-
tions and potentials, Hohenberg and Kohn showed how to determine the ground
state density for a given system described by a Hamiltonian of the form of Eq. (1).
The energy functional, which in the standard formulation of DFT is the most im-
portant density functional, is given for some arbitrary ground state density n as-
sociated to a ground state wavefunction ¥ = ¥[n| (note that we here write n and
Y instead of 19 and ¥y to not overload notation) by

Eowi[n] = (¥[n]|A[¥[n]) = (¥[n]|T + W|¥[n]) +/drvext(r)n(r), (21)

=F[n]

where F[n] is called the universal functional as it is the same for all N-electron
systems with the same electron-electron interaction, regardless of the external po-
tential acting on it. It is then shown that the exact ground state density ng for a
given external potential vey; is the one that minimizes the energy functional

E[no| = rr}qin Ey.. [1]. (22)

This result can be inferred from the variational principle of Eq. (9). The main
drawback of the minimization via the density instead of via the wavefunction is
that we do not know the exact form of the universal functional F[n]. Besides some
mathematical subtleties that make a generaliziation of the universal functional to
more than just ground state densities necessary [43], the main problem in DFT is
that we need to find a way to accurately and efficiently approximate F|n].

Kohn-Sham theory for DFT

In practice, the most successful approach to approximate F[n] is then based on
a further seminal work by Kohn and Sham [11], where they introduced the KS
method. The point of the KS formulation [12] is to replace the original many-body
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system by a suitable effective non-interacting system that is assumed to have the
same density as the interacting system. Based on the simple to compute expres-
sions of the non-interacting system, approximations for the exact F[n] are then
constructed.

The calculations in KS theory are performed for a non-interacting system of N
electrons with a Hamiltonian of the form

Hys = T + Vs, (23)

where Vis = YN, vks(r;). The Hohenberg-Kohn theorem is valid also in this
case, and ensures a one-to-one correspondence between vks and the ground state
density of the non-interacting system. The solution (assuming no degeneracy) to
the non-interacting Schrodinger equation is a Slater determinant of the form of
Eq. (10). This can be seen by just realizing that each particle i = 1,..., N is just
subject to an external potential of the form vgs, and its minimal energy is ob-
tained if we just fill the N-lowest spin orbitals while obeying the Pauli exclusion
principle. Thus instead of working with the N-electron Slater determinant we can
just consider the single-particle equations (as in the case of Hartree-Fock) and di-
rectly work with the orbitals ¢;(x). The equation for each spatial orbital is then a
single-particle Schrodinger equation of the form

<—;V2 + va(l‘)> ¢i(r) = €igi(x) (24)

and the ground state density is constructed from the N-lowest single-particle or-
bitals as

N
()=}, ) lpi(x)” (25)
U:TINL i=1

The non-interacting energy functional then becomes

Eq[ns] = Z/gb;k(x)_2V2¢i(x)dr+/drvl<5(r)ns(r), (26)

=T [ns]

where T;[n;] is the non-interacting universal functional. Similar to the interacting
case, 1 is the non-interacting ground state density that minimizes the energy
functional for a given vks.

The main problem is to know which density is the density of the interacting sys-
tem. The whole point of DFT is to predict this density by minimizing the energy
functional. Kohn and Sham solved this by a self-consistency condition between
the interacting and non-interacting system. For this one usually assumes that any
interacting ground state density can be represented by a non-interacting KS sys-
tem. This assumption is called non-interacting v-representability. More generally,
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a density is said to be v-representable if it corresponds to the density of an anti-
symmetric ground state wavefunction of a Hamiltonian of the form of Eq. (1) [44-
49]. If the Hamiltonian happens to be non-interacting, we call such a density non-
interacting v-representable. With this assumption we can re-express the exact en-
ergy functional for an arbitrary interacting ground state density with the help of
the non-interacting energy functional as

Eo..[1] = To[n] + Ex|n / drvexe(£)(x) + Fln] — To[n] — Ep[n]. (27)

=Ex[n]

Here we have introduced the classical Hartree energy expression

/

[n] = ;/Wdrdr' (28)
and the exchange-correlation (xc) energy term E..[n]. This term is unknown and
in practice needs to be approximated. The exact ground state density ng is then
found by minimizing over all ground state densities n. Assuming differentiability
of the functionals this minimum can be found by making a functional derivative
with respect to n and setting it to zero. Using that we represent the density by a

Slater determinant of orthonormal orbitals, this leads to a set of non-linear coupled
equations (similar to the case of the Hartree-Fock theory) of the form [11]

(=572 + o) + om0 + vsc[1)(0) ) 0(6) = i), (29

where the Hartree potential is

(5E H ,
oulnl(6) = S0 = [ (30
and the unknown xc potential is defined by

orcln] (1) = 5552?' (31)

Equations (25) and (29) for all occupied orbitals need to be solved self-consistently.
The self-consistent solution 19 is then the density that minimizes E,_,[n] and is
thus the sought after interacting density. For the self-consistent solution the single-
particle KS potential vgs = vext(r) + vg[no](r) + vxc[n0](r) reproduces exactly the
interacting density .

We have not solved anything at this point, we have just rewritten the minimiza-
tion of the energy functional E,_,[n] in an implicit way. However, we take into
account the non-interacting kinetic energy and the Hartree interaction energy ex-
plicitly and have shifted the unknown expression into the xc energy. As it turns
out, simple approximations to E,.[n] and with this v,[ng] are already very accu-
rate in most cases [12].

13
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Local Density Approximation

The oldest and most widely used approximation in DFT is the local density ap-
proximation (LDA) [9]. It approximates the xc energy expression of an inhomo-
geneous system by the xc energy of the homogeneous electron gas, evaluated at
the local density. This is the standard energy-based approach for the derivation
of xc functionals [12]. In the second part of the thesis (Sec. 3.2), we will show an
alternative way to directly directly the xc potentials from a force-based description
of many-body systems circumventing the xc energy expressions. The LDA takes
the form

EEPA ] = [ n(r)ele (n(x) dr

= [ (o) (e n(e) + ()

= ExPA[n] + EFPA[n], (32)

where the xc energy density €9 (n(r)) is solely a function of the density at the cor-
responding point and decomposed into exchange energy density €/°"(n(r)) and
correlation energy density €/ (n(r)). The LDA exchange energy functional makes
use of the exchange energy density €/ (n(r)) pointwise and is given analytically

as [12] ’

EPA () = [ n(x)el™ (n(x))dr

1/3
= —2 (i) /n(r)4/3dr, (33)

where

h 33\ s
mn) =3 (2) " n” 649
For the correlation energy of the homogeneous electron gas, analytic expressions
are not known except in the low density [9, 50] and high density [51, 52] limit
which corresponds to infinitely strong and infinitely weak correlations. One usu-
ally employs highly accurate numerical data from wavefunction-based methods
to fit expressions for the correlation energy density of the homogeneous electron
gas [50, 53]. The LDA is easily implemented in the KS equations, as the corre-
sponding xc potential is a simple function of the local density

LDA(r) _ 5E>I§PA[H]

Oxe ~ on(r)

= exc(n(r)) + ”<f>W~ (35)
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The exchange part of v{P4(r) is thus obtained from the differentiation of Eq. (33)

as

3772 1/3
oo = BT sy (36)
T
We note that in the literature [54] there exists some variant of the LDA exchange
potential. One of these is the Slater exchange
z)Slater (1‘) _ § LDA(r)

X = <0

20X (37)

which was obtained as a free-electron approximation to the exchange potential
to make a simplification of the Hartree-Fock method. Thus the average exchange
energy was replaced by the value one should get for a free-electron gas with local
density given by the density at the position in question. This then led to a simple
expression for the average potential field. In application, 952" is often multiplied

by an adjustable prefactor « which defines the so-called Xa-method [55]

O (x) = 2atPA (). (8)

By comparison to some empirical values, it was found that multiplying v32%" by a

prefactor a that minimizes the energy, gave good results. The value of a often used
is 0.7 which leads back to the usual LDA exchange. In Sec. 3.3 we will show how
the force-based approximations to xc potentials for the homogeneous electron gas
reduce to a form of the Xa variant of LDA (which in our case we denote with A
instead). Then we show that by setting A to 1/2 we get exactly the LDA exchange
potential v1PA(r) and give a clear meaning to our choice of A.

A number of more accurate approximations based not only on the density but
also on its spatial gradient have been derived over the years. These build up the
group of generalized gradient approximations (GGAs) [56—58] which have been
revised and modified [59-61]. Other approximations involving higher derivatives
of the density and sometimes orbital-dependent quantities such as the kinetic en-
ergy density 7(r) are grouped under meta-GGAs [62-64]. Some more recent func-
tionals of this type have been derived by Perdew and others [65-68]. Further, a
higher level of accuracy is achieved by taking into account exact exchange contri-
butions to the xc energy functionals of LDA, GGA and meta-GGAs to form hybrid
and meta-hybrid functionals [69—72]. This detailed hierarchy of approximations is
known as Jacob’s ladder of density functional approximations [73]. In Chap. 3 we
will devise orbital-dependent approximations based on the local-force equations
of quantum mechanics which are on the fourth level of this Jacob’s ladder. The
main advantage of these approximations is, however, that they are consistent with
all the different situations (to be) discussed in this introductory chapter as well.
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2.2 TIME-DEPENDENT SCHRODINGER EQUATION

So far we have discussed how quantum mechanics and then DFT is used to pre-
dict the properties of electronic systems in the presence of an attractive static scalar
external potential, for instance, the attractive Coulomb potentials of static classi-
cal nuclei. However, in many situations the static picture is not sufficient and
the actual dynamics of the electrons upon radiation or when a chemical reaction
happens become important. In this case we need to consider the time-dependent
Schrodinger equation instead of the static one. That means we no longer look for
the wavefunction or eigenfunctions of a time-independent Hamiltonian but inves-
tigate an evolution equation of the form of [27]

A

iatT(xll"'Ilet) = H(t)T(Xl,...,XN,t). (39)

To solve such an evolution equation, which is first-order in time, we need to choose
an initial state ¥ (to) = ¥y at t. In the following we will, without loss of generality,
assume to = 0. Under certain conditions [27] we can then solve this equation and
from this determine the wavefunction ¥ (t) at each instant in time. In analogy
to the static Schrodinger equation given in Eq. (1) we choose in this section the
time-dependent Hamiltonian to be of the form of

A

A(t) = T+ Veut(t) + W. (40)

The kinetic part and interaction potential are given by Eqgs (2) and (4), respectively.
The only explicitly time-dependent operator is the external scalar potential

V(t) = Zvext(rir t) (41)

In most practical cases, the time-dependent external scalar potential consists of
two parts. One that describes static attractive potentials, such as due to static nu-
clei, and an explicit external time-dependent potential, such as an external laser
pulse in dipole approximation. More formally we therefore usually have

v(r, t) = vo(r) +v1(x,t), (42)

where, for instance, we could have vy (r,t) = Egxsin(wt) which describes a continuous-

wave laser with frequency w and polarization direction ey [74]. Similarly to the
static case, also for the time-dependent case the numerical solution of the time-
dependent Schrodinger equation with interaction W among the electrons is only
possible for simple systems with only a few electrons. In the case that the exter-
nal time-dependent perturbation v; is as strong or even stronger than the binding
potential vy, this becomes even more severe. In such strong-field cases already the
helium atom with 2 interacting electrons becomes very challenging [6]. Therefore
an effective reformulation of time-dependent quantum mechanics in a similar way
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as DFT for the static case becomes highly desirable. Before we discuss such a refor-
mulation, let us consider a few further details of the time-dependent Schrodinger
equation that become important in the following.

The one-particle density is determined by the wavefunction ¥ (f) similar to the
time-independent case as

n(r,t)=N / ¥ (x1, ..., xn, ) [Pdxa . .. xN. (43)

If we now make use of the time-dependent Schrodinger equation of Eq. (39) to-
gether with the form of the Hamiltonian of Eq. (40), we find for the time-derivative
of the density that

=N / B F)Y + ¥ (3,¥)dxa . .. xn
-1 /‘I’*Vz‘l’ — (V2¥*) ¥dxa ... xn
2i
= -V.j (44)
Here we have defined the total one-particle current density as

j(r, t) = N%/‘P*(xl,...,xN,t)V‘I’(xl,...,xN,t)dxz . XN, (45)

with V only acting on the first particle position and 3 being the imaginary part. As
in the static case we only consider fermionic wavefunctions. Eq. (44) is the continu-
ity equation, which corresponds to the local conservation of particles. That is, the
flux of the particle current across the boundary of a given volume determines how
the particle number changes in that given volume. Simply put, in time-dependent
quantum mechanics particles (or equivalently charges) cannot be created or de-
stroyed. Most easily we see that once we integrate the continuity equation over all
of space such that

/atn(r, t)dr = /V j(x, t)dr = 0. (46)

Also for the current density we can derive how it changes in time for a Hamilto-
nian of the form of Eq. (40). In this case we find that

3 = N%/((at‘F*)V‘I’+‘I’*V(8t‘I’))dr2...rN
- N§R/ (HY")VY — ¥*V(AY)) dry ... 1y
— NR / (AY")VY — Y AVY — ¥* (V)Y dry ... 1y
— nVo—Fr— Fy, (47)

where R is the real part and Fr(r,t) and Fy(r,t) are the internal force densities
of the many-body system associated to kinetic and interaction effects, respectively.
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They can be expressed in the form of the divergence of stress tensors [75, 76]. We
give the exact expression of the force terms Fr(r, t) and Fy (r, f) in Sec. 3.3. If we
now consider the total momentum of the system which is connected to the current

by
P(t) = / j(r, t)dr, (48)

we find from Eq. (47) that

oP(t) = /n(r,t)Vv(r,t)dr, (49)

since the internal (divergence) contributions integrate to zero. We see that this is
the quantum version of Newton’s third law. For a many-body system, the rate
of change of the total momentum is equal to the external force acting on it. We
therefore see that Eq. (47) is a local force equation and locally the internal forces
Fr and Fyy can give an important contribution.

Similarly to Eq. (49), the rate of change of the total angular momentum is given
solely by the torque due to external forces, while the net torque due to electron in-
teraction and stress forces vanishes [16]. These relations (in a more general form)
describing the net force and net torque will be important in determining condi-
tions on approximations in Sec. 2.4.1 and later in our force-based approach to
approximations in DFTs in Sec. 3.2. Further, Egs. (44) and (47) are the basis of
the time-dependent extension of DFT as discussed in the next Sec. 2.2.1 and also
provide the foundation for a hydrodynamical perspective of quantum many-body
systems [75, 77]. They show an equivalence to two main theories that describe
the dynamics of continuous media, that is, elasticity in the case of solids and hy-
drodynamics for fluids. In these theories the many-body forces are expressed as
divergences of stress tensors, which are themselves dependent on the velocity or
the displacement field. In hydrodynamics, for instance, the current density satis-
fies the Navier-Stokes equation [78], which describes the motion of viscous fluids
and is given in terms of the divergence of a stress tensor due to viscosity and pres-
sure. This gives relations between densities and potentials without going through
the energy.

As said before, solving the time-dependent Schrodinger equation (39) is an ex-
tremely challenging task due to the high dimensional wavefunction. As in the
static case, approximations have been devised to circumvent this issue either based
on wavefunctions [79-82] or on reduced quantities [16, 27, 83, 84]. For wavefunc-
tion methods, we here only mention the time-dependent extension of the Hartree-
Fock method as discussed in Sec. 2.1.1. One can make the Hartree-Fock equations
time-dependent by making the external potential time-dependent and then one
finds approximate solutions to the time-dependent Schrodinger equation [85, 86].
In the following, we will focus on extending DFT to the time domain.
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2.2.1 Time-Dependent Density Functional Theory

The idea of DFT to replace the wavefunction by the density as basic descriptor of
the system can be extended to the time-dependent case. Although mathematically
quite different, since it employs EOMs and no variational principle, Runge and
Gross provided an analog of the Hohenberg-Kohn theorem for the time-dependent
case in 1984 [14]. The Runge-Gross (RG) theorem provides a one-to-one correspon-
dence between the time-dependent external potential of a system and its time-
dependent density, for a given initial many-body wavefunction. This allows to
recast the time-dependent many-body problem in terms of the time-dependent
density as defined in Eq. (43). This gives rise to time-dependent DFT (TDDFT)
and allows to determine efficiently not only the excitation spectra of complex
molecules [16] but we can also access highly non-linear electron dynamics such
as in the case of high-harmonic generation [74, 87-89]

The Runge-Gross Theorem

The basics of TDDFT and the fundamental idea of the RG theorem is to invert
the mapping that is induced by the time-dependent Schrodinger equation with a
Hamiltonian of the form of Eq. (40) with different external potential v(r, ) and for
a given initial state Y. Formally this mapping can be written as

SRR, () My n(x b). =

o(r, t)

That is, for a fixed initial state ¥y we solve the time-dependent Schrédinger equa-
tion for all possible external potentials v(r, t) [14] and from this get then all possi-
ble time-dependent wavefunctions ¥ (#) that are connected to the initial state. All
these wavefunctions are different since the evolution equation has a unique solu-
tion for a given initial state under certain conditions [15]. All these wavefunctions
then allow to determine via Eq. (43) all possible time-dependent densities that are
connected to the initial state. It is, however, not apriori clear that all the different
wavefunctions also lead to different densities. If this would be the case, we could
invert the mapping and express the wavefunction in terms of the initial state and
the time-dependent density only. This would in turn allow to express all observ-
ables in terms of the density and the initial state. The RG theorem tells us that this
is indeed the case under certain conditions.

Theorem 2 Given the initial many-body state Y of an N-particle system that evolves
under the effect of two different potentials v(r, t) and v'(x,t) # v(x, t) + c(t), the densities
n(x,t) and n'(x, t) will start to differ infinitesimally after to. Hence, there exists a one-to-
one mapping between densities and external potentials defined up to a merely additive
time-dependent function, given an initial wavefunction. [16]

We want to highlight that in the context of TDDFT and the RG theorem, two
potentials are considered different only if they differ by more than just a purely
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time-dependent constant ¢(f). Since such a time-dependent constant amounts to
merely a gauge choice (which is the only gauge freedom left if we only have
a scalar potential, see also Sec. 2.4 for further details) all physical observables
should be independent of this gauge choice. Indeed, since a time-dependent con-
stant function c(t) just adds a time-dependent phase to the wavefunction ¥'(t) =
exp (i fot dt’c(t'))¥(t) all observables and specifically the density stay unchanged
since it cancels in the inner product.

The proof of the RG theorem gives us already some hints on how to connect
to the different DFTs in the coming Chap. 3. This is the reason why unlike with
the Hohenberg-Kohn theorem in DFT, here we give a brief recap on the proof of
the RG theorem. We follow hereby closely Ref. [16]. There are alternative proofs of
the RG theorem available that lift certain of the below restrictions [15, 90, 91], but
we stick to this more simple way of showing the invertibility of the mapping of
Eq. (50). As a first restriction we consider only potentials that are Taylor expand-
able about the initial time ;5 = 0,

o(rt) =) %vk(r)tk. (51)
k=0 "

Thus also a different potential v/(r,t) is determined uniquely by its expansion
coefficients v} (r). Therefore, there must exist a smallest integer k > 0 such that

v(r) — v (1) # const. (52)

We will next make two steps. In a first step, the uniqueness between current den-
sities and potentials are established by making use of the EOM of the current
density of Eq. (47). To do so we consider the difference between the EOM for the
different external potentials at the initial time

U (j(r,t) —j'(x,1))[1=0 = —n(r,0)V (v(r,0) — 0'(xr, 0)). (53)

Here we have used Eq. (47) and the fact that both EOMs start form the same initial
state such that both systems have the same internal stress forces (see also Sec. 3.1
for the explicit form of the stress forces). If now v(r,0) — v/ (r,0) # const then the
current densities will be different. If, on the other hand, they are the same up to
a constant, then we go to the next order. Calculating the second time-derivative of
the current differences at t = 0 provided that v(r,0) — ¢'(r,0) = const we find

A (j(rt) —j'(r,1)) im0 = —n(r,0)V (vx(r) — v4(x)), (54)

with k=1. If again the expansion coefficients are the same of both potentials we
can go up until the smallest k where they differ and we again have Eq. (54). Since
such a k exists by assumption we have shown that j(r, t) # j'(r,t) for t > 0.
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In the next step we show that the same conclusion holds also for the densities.
To do so we use the continuity equation (44) and apply it to Eq. (54). This leads
(having the same assumption that for all previous k we have vy — v} = const) to

O 2 (n(rt) —n'(1,1)) im0 = =V (j(r,t) —j'(r,1))]1=0
= =V (n(r,0)V(vr(r) — 1;(r))). (55)

It is left to show that if v(r) — v;(r) # const the left hand side of Eq. (55) is
non-zero. This is done by use of Green’s integral theorem. If we define wy(r) =
vk(r) — v} (r) we see that

/ drn(x,0) (Vg (r))?
__ / drwg(1)V - (n(x,0) Vg (r)) + f ds - (n(r,0)wy (1) Ve (). (56)

The second term on the right hand side of Eq. (56) vanishes for all physically
realistic potentials, since the density decays exponentially to zero at infinity. Since
the integrand on the left hand side is nonnegative, the integral on the left hand
side is non-zero as well. From this together with the surface integral vanishing we
can conclude that the first term on the right hand side is also non-vanishing, and
therefore V - (n(r,0) Vwy(r)) # 0. We have thus shown under certain assumptions
that if potentials differ then n(r,t) # n'(r, t) for t > 0.

The RG theorem is the fundamental existence theorem of TDDFT which shows
that for a given initial state, the time-dependent density is a unique functional of
the potential and vice versa. This implies that also the wavefunction is a functional
of the density and the initial state. More formally we can write

o(r,t) = vln, Yol(r,t) = H(t) = Hln, ¥o|(t) = ¥(t) =¥[n,¥o|(t). (57)

This implies that all physical observables become functionals of the density as well
by

O(t) = (¥[n, Yol (1)|O(t)[¥[n, ¥o] (1)) = Oln, Yol (t) (58)

This tells us that one only needs the time-dependent density in order to evaluate
any observable of a time-dependent many-body system.

At this point we want to make a few remarks. Firstly, the RG theorem in the
above form relies on the Taylor expandability of potentials and observables. This
can exclude certain interesting situations and hence there are reformulations of the
theorem as well as the proof based on fixed point constructions [9o] and non-linear
Schrodinger equations [91] that are more general. Further, the theorem can be ex-
tended to periodic systems [92]. What is important for our further considerations
is that the proof relies on the EOMs for the current density and the density. The
EOMs take over the role of the energy minimization in ground state DFT. Their
role will become even more prominent in the next paragraph, where we discuss the
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time-dependent KS scheme and the extended RG theorem. While the variational
principle does not hold for time-dependent quantum mechanics, the EOMs hold
for both, the time-dependent and static quantum mechanics. This already gives
a hint that if we want to find an encompassing formulation of DFT and TDDFT,
the EOMs are a possible way to go. However, the current formulation is geared
towards scalar external potentials only. If we also include external magnetic fields,
then it needs to be generalized. This will be discussed in Sec. 2.4.1.

As in the case of DFT, also TDDFT is employed almost exclusively together
with the KS scheme. In the time-dependent case the KS formalism is based on
an extension of the RG theorem introduced by van Leeuwen [93]. Since it again
highlights the importance of the EOMs we briefly discuss it in the next paragraph.

The time-dependent Kohn-Sham Scheme

We have shown in the previous section that for a given fixed initial many-body
state ¥, the time-dependent particle density n(r,t) of a system with interaction
w(|r —r’|) is a unique functional of the time-dependent potential v(r, t). For more
practical applications, we use the time-dependent KS scheme which entails replac-
ing the interacting system with a non-interacting one such that both yield the same
density. Such a system, known as the KS system, is obtained by choosing an effec-
tive potential vks(r, f), in general different from that of the target system of course,
that mimics all interaction effects and is unique up to a purely time-dependent
function. The RG theorem in the above form, however, does not show that this is
actually possible.

What one needs to find out is whether two many-body systems with different
particle-particle interactions w(|r — r’|) (this could also be zero) and different exter-
nal potentials v(r, t) and v'(r, t) starting from different initial states can reproduce
exactly the same density n(r, t). If it is the case, then we need to determine whether
the potential is unique up to a purely time-dependent function. This is the ques-
tion of non-interacting v-representability which was answered in the affirmative
by van Leeuwen in Ref. [93] under some mild conditions.

Theorem 3 (extended Runge-Gross theorem) Given the initial state Yo of a many-
body system evolving under the interaction potential w(|r — t'|) and external potential
v(x,t), there exists a different many-body system with initial wavefunction ¥{, evolving
under an interaction potential w'(|r — ¥'|) and a unique external potential v'(x,t) (up
to a purely time-dependent function) such that both systems yield the same density. The
initial wavefunction ¥(, must be chosen such that it yields the given density and it’s time-
derivative at the initial time. [16]

The proof relies again on the EOMs of the density and the current subject to
some initial conditions [16]. However, in contrast to the RG proof it is not the
difference in EOMs that is Taylor expanded (see Eq. (54) and (55)) up to a certain
order, but it is the full EOMs that are Taylor expanded. This gives a direct relation
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between the Taylor coefficients of the potential v, and of the density n;. Without
going into detail, the proof shows that given a Taylor expandable density n(r, t) =
Yk %nk(r) t* and a compatible initial state, the corresponding potential is uniquely
determined up to a purely time-dependent function by combining the EOM of the
density (44) and of the current density (47), which leads to

~V(n(r,)Vo(r,t)) = =V (Fr(r,t) + Fu(r, 1)) — n(r,1). (59)

Using the same equation but now for a non-interacting system then allows to give
a defining equation for the Hartree-exchange-correlation (Hxc) potential directly

as [93]
—V(n(r, t)Vogs(r, t)) = =V (Fp(r, t) — Fr(r,t) — Fy(x, £)). (60)

Here we denote with F.(r,t) the kinetic stress forces of the KS system and with
Fr(r,t) the kinetic stress forces of the interacting system as well as Fy(r,t) the
interaction forces of the interacting system (see also Egs. (126) and (127)). The ex-
tended RG theorem is therefore a way to answer in an affirmative way the question
of v-representability in TDDFT. A more detailed discussion on the finer details of
the v-representability question in TDDFT can be found in [15]. For lattice systems
further details are discussed in Refs. [94] and [95].

We can now move on to the practical time-dependent KS scheme. The KS initial
wavefunction @ is taken as a Slater determinant of single particle orbitals ¢?(x)
usually obtained from a DFT calculation. The time-dependent (spatial part of the)
orbitals are then determined by the self-consistent solution of the non-linear single-
particle evolution equation [16]

iatgbi(l‘, t) = <—Z + UKs [71, 0, ‘Po, CDO] (1‘, t)) (Pi(l', t), (61)
with initial condition
¢i(r,0) = ¢7 () (62)

and the time-dependent density is given by

N
n(r,t) =) |i(r ). (63)
i=1

The KS effective potential vks is defined such that it includes the external poten-
tial from the interacting system v(r, t), the Hartree potential vy that accounts for
some effects due to interaction and only depends on the density at the same time
t and finally the xc potential vy, = VHx. — VH

n(r,t
vks|n, v, Yo, Po](r, ) = v(r, t) + /dr‘;_ 7 Oxe [n, Yo, o](r, t). (64)

)
|
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In principle this time-dependent KS scheme yields the time-dependent density of
the many-body system evolving in time under the influence of an external poten-
tial of the form of Eq. (42). However the scheme is not complete without making
an approximation to the xc potential. Using Eq. (60) we see that we would need
to approximate the internal force densities Fr and Fyy of the interacting system. A
more detailed look [96, 97] shows that these terms depend on the entire history
of the time-dependent density and not just on the instantaneous value of the den-
sity. Therefore, at point r and time ¢ the xc potential has a functional dependence
not just on n(r, t) but also on every n(r,t') for arbitrary point r’ in space and for
0 < t < tas well as on the initial states ®y and ¥ of the KS and the interact-
ing system, respectively. Thus the xc potential has “memory” (it depends on all
the previous densities) and initial state dependence. It is, however, not so easy
to devise approximations that have both, “memory” and initial state dependence.
These memory effects are well-known to be important for the capture of physi-
cal effects such as double excitations and charge transfer reactions [98, 99]. Their
importance can be understood from the linear response perspective of double ex-
citations where the memory is responsible for shifting the bare KS resonances and
generating new resonances. For, in the calculation for a non-interaction system,
that is without a memory dependent kernel, not only will you get excitations at
the wrong spots but you will also be missing multiple excitations [97, 100]. It is
therefore common practice not to use specific time-dependent approximations but
to just employ approximations from the ground state theory.

The Adiabatic Local Density approximation

The standard level of approximations in TDDFT are adiabatic approximations.
That is, one uses an approximate energy functional E.[n] from which one gets
an approximate xc potential vy[n] and uses this in Eq. (61). It is clear that in
this way the xc potential only depends on the density n(r,t) at the same instant
of time t and does not depend on the initial states. So these adiabatic function-
als miss all the “memory” and the initial state dependence the exact xc potential
should have. It is then usually argued that such an adiabatic approximation is
good if the density changes slowly, that is, adiabatically. The reason for a failure
of the adiabatic approximation in this case can again be understood from linear-
response TDDFT, where the functional derivative of the xc potential is used to
define a linear-response xc kernel [16]. If there is no memory, such a kernel is
frequency independent (due to the Fourier transformation of the delta function in
time to frequency, which results in a constant in frequency) and thus these types
of excitations are not captured [16]. Yet, despite these drawbacks the adiabatic ap-
proximations work surprisingly well in many other situations, such as in the case
of strong field physics and plasmonics [74, 101].
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Following this logic, the most common adiabatic approximation in TDDFT is the
adiabatic LDA (ALDA). It is obtained by using Eq. (35) with the time-dependent
density

SELPA[y]
ALDA _ %5k
ol D)5, 1) = T2 (65)
Using the LDA in exchange approximation leads to
2\1/3
vRPA ] (1, t) = —(37-[7_[)n1/3(r,t). (66)

2.3 STATIC MAGNETIC SCHRODINGER EQUATION

Up to now we have discussed the description of many-electron systems influenced
only by static or time-dependent scalar potentials. These are the most common
situations, yet the external electromagnetic field can be more general. In the case
where we are interested in static situations, the most general electromagnetic field
takes the form [12]

E(r) = Vo(r) (67)
B(r) =V x A(r) (68)

with E(r) and B(r) being the static electric and magnetic field, respectively. We
thus see that we can also have external magnetic fields that influence our electronic
system. Such situations also gained much attention over the years [102] and are
specifically important, for instance, for astro-chemistry where molecules under the
influence of strong magnetic fields are investigated [103]. It is, however, important
to realize that to every B(r) field, we have several possible vector potentials due to
the intrinsic gauge freedom of the electromagnetic field [2]. That is, if we choose
A(r) a differentiable function of r, then besides A(r),

A'(r) = A(xr) + VA(r), (69)

also describes the same magnetic field. The physics should stay the same, irrespec-
tive whether we choose A(r) or A’(r) to describe the problem. That is the basic
idea of the minimal-coupling prescription [12], where a change of the external
electromagnetic field by a gauge transformation of the form of Eq. (69) leads to a
local phase that is added to a static wavefunction

W — e i TN A) (70)

Any physical observable should stay unaffected by this gauge change in the wave-
function. Therefore one adopts the definition of the momentum, which being a
derivative has a dependence on this spatially dependent phase, and uses instead
the canonical momentum

—iV; = —iV; + A(x) (71)
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in the Schrodinger equation. This leads to the static magnetic Hamiltonian [12],
which describes a system of N electrons in the presence of an external electrostatic
field E(r) and a magnetostatic field B(r),

N
H= Y (-iVi+A rl))z—i—V—i—W. (72)

i=1

Here V and W are the scalar and the interaction potentials as defined before in
Egs. (3) and (4), respectively. Having an eigenstate of Eq. (72), we find the corre-
sponding eigenstate when replacing A — A" = A+ VA by Eq. (70). Also note
that, the trivial gauge freedom we had in the static Schrodinger case, that is, the
fact that we could replace v(r) — v(r) + const, is valid here as well. This can be
best seen by Eq. (67), where adding a constant to the potential is canceled by the
gradient.

The definition of the density stays the same as before in Eq. (17), since the
phase function A(r) just cancels out. Yet the current, which is connected to the
momentum and the forces (see Eq. (49)), is changed. In order to be gauge invariant
and in order to obey the continuity equation we have (see Sec. 3.1 for a general
derivation)

N\s/‘{’* A(r))¥dr, ..
= N%/‘I’*V‘I’dtz ..ty —n(r t)A(r)

= jpara (I‘) + jdia (I‘) (73)

Here the first and second term are the paramagnetic and diamagnetic current den-
sities, respectively. We note here that, while the full current j is gauge-independent,
the individual parts are gauge dependent.

We have now defined the basic ingredients corresponding to many electron sys-
tems in the presence of a static magnetic field. However, solving the Schrodinger
equation remains a tedious task in this setting as well. The Hartree-Fock method
has also been adapted to this setting in order to approximate the wavefunction
directly [104-106]. A number of approximations have also been developed to ap-
proach this issue based on reduced quantities [107-109] associated to systems in-
volving magnetic fields. In the next part will focus on current DFT (CDFT) where
the density and certain forms of the current density are the reduced quantities of
interest.

2.3.1  Current Density Functional Theory

On a first glance not much seems different when considering the magnetic Hamil-
tonian of Eq. (72) in DFT instead of the usual Schrodinger equation. It seems
reasonable to assume that one now only needs to swap the density n by the cur-
rent density j as reduced quantity to set up a CDFT framework. This was indeed
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tried by several authors [110-113]. The problem, however, is that due to Eq. (73) we
know that the physical current contains an explicit external part in its definition.
This is a more severe issue than it seems, since this makes variations with respect
to j not anymore independent of A. This means that, besides a lack of a formal
Hohenberg-Kohn theorem for CDFT with the physical current, the usual way of
obtaining the xc potentials becomes problematic. Several ways around this issue,
for instance, by introducing an adapted variational principle [114, 115], have been
proposed. But in practice a different solution, based on the work of Vignale and
Rasolt [107] is used. Instead of a quantity that contains part of the external field,
one uses only the parts of the current density that are determined by the wavefunc-
tion only. That is, the paramagnetic current jpara and the density n, which appears
in the definition of the diamagnetic term. It can then be shown that there is a
one-to-one correspondence between the set of ground states ¥y and the set of den-
sities (11, jpara) [116]. The major difference, however, is that there is no uniqueness
between the external potentials and the ground state, since for the Pauli equation
different external fields (v, A) can have the same ground state wavefunction [117].
Nevertheless, the above result is enough to re-express the wavefunction only in
terms of the paramagnetic current and the density as ‘I’[n,jpara] and thus all ob-
servables obey (we denote j,,,, here as j, to avoid an overload of notation)

O[n/jp] = <‘F[n/jp”(§‘\y[n/jp]> (74)
In particular the energy is obtained as

E[n,jy,] = (¥ln,jp I T+ W[¥[n,j,])

Fin)
+ [ drjy(0)- AW+ [ dr (vext(r) + A22(r>> n(r). (75)

Eext [n/ip]

Here the last two terms can be found directly from Eq. (72) using the definition
of the paramagnetic current density. From the variational principle the functional
E[n,j,] has then a minimum for the true density and current (1, j,,,)-

Having established CDFT, we can follow the usual way and introduce an aux-
iliary system that we use to devise approximations. Assuming non-interacting v-
representability, the ground state densities (n,jpara) are expressed in terms of the
KS orbitals. Following a similar procedure as in DFT the total energy functional is
obtained as

E[n,i,) = Tolnj,] + Eexliiy) + Enln] + Excln, i), (76)

where T; and Ey are given by Egs. (26) and (28), respectively. By minimizing
En, jp] with respect to the KS orbitals under proper normalization and orthogo-
nality conditions, one arrives at the KS equations of CDFT [107]

{(—iV + Aks(1))? + vks (1) i (r) = eigpi(x), (77)
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where the KS potentials are defined up to a gauge transform by

Uks(r) = Vext(r) + U (1) + Uxe (1) (78)
AKS(r) = Aext(r) + Axc(r>- (79)
The xc potentials are given as
O0Ex[n,j.]
Uxe(T) = Tr)p’jp' (80)
OExc[n, jp]
Axc(r) = WM, (81)

where the notation implies that the variation of E,. with respect to one density is
done while keeping the other density constant. Vignale and Rasolt also show that,
the xc energy functional which now is a functional of the density and the para-
magnetic current, can also be expressed in terms of the gauge-invariant vorticity,
Ec [n,jp] = Ey[n,v] with
jp(r)

v(r) =V x POk (82)
We further note that due to the nonuniqueness issues, it is expected that in para-
magnetic CDFT the functionals exhibit non-differentiabilities [12, 117]. A more
detailed investigation, however, shows that the same is already true for standard
DFT [118]. We will comment on this issues later in Chap. 3.

As with TDDFT, CDFT as well does not have many known approximate xc
functionals [119, 120]. So in practice one uses functionals from DFT. Besides, if
one would like to use the physical current instead of the paramagnetic current,
then there is no clear way to even define formally the corresponding xc potentials.
In both cases, we will see in Sec. 3.2.2 how one can overcome these issues.

2.4 TIME-DEPENDENT MAGNETIC SCHRODINGER EQUATION

Similarly to the case of the usual Schrédinger equation, the time-dependent sit-
uations of the magnetic Schrodinger equation are also important yet use slightly
different concepts. Again, instead of a minimum-energy principle and the corre-
sponding ground state we have an evolution equation that needs to have a pre-
scribed initial state. The main difference to the Schrodinger case is that we have
a general electromagnetic field. Therefore, before we consider the time-dependent
magnetic Schrodinger equation, let us briefly recall the time-dependent Maxwell’s
equations and how the gauge freedom appears in this case.

A time-dependent electromagnetic field can in general be represented by a time-
dependent scalar potential v(r, t) and vector potential A(r, t) as

E(r,t) = Vo(r, t) — 9 A(r, 1), (83)
B(r,t) =V x A(r, t). (84)
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The electric field E(r, t) and magnetic field B(r, t) do not change under the general
gauge transformation

v'(r,t) = o(r,t) + aAé:'t)
Al(r,t) = A(r, t) + VA(x, t), (85)

where A(r,t) is now a differentiable function of r as well as t. Following our
previous discussion in the static case, the wavefunction of the electrons changes

by
V() = ¥(H)e T Almid), (86)

As a consequence, we have to use the now explicitly time-dependent canonical
momentum

—iV = —iV + A(r;, t) (87)

and we get from the time-derivative acting on ¥’(¢) a scalar modification

OA(r;, t
o(r;, t) = v(r;,t) + g;” ) (88)
This actually allows to remove the scalar potential altogether by choosing
OA(r;, t
((9;) = —o(r;, t). (89)

In general, though, we have the time-dependent magnetic Schrodinger equation
given in some gauge as

N
Y (—iVi+ A )+ V() + W, (90)

where the first term is the square of the canonical momentum, V(t) is given in
terms of the scalar potential for the specific gauge and W is the usual Coulomb
interaction among the particles. The Coulomb interaction is not affected by the
gauge transformations of the external field (v(r,t), A(r,t)) since it comes from
the internal photon field described by quantum electrodynamics in the Coulomb
gauge [2]. In order to change the gauge of the internal photon field, one would
need to consider full quantum electrodynamics. The time-dependent density is de-
fined as in the time-dependent setting by Eq. (43) and the gauge-invariant physical
current density from the continuity equation is

i(tt) = NS / Y (V — iA(r, 1)) ¥drs . .. 1y
= N%/‘Y*V‘I’dtz co.ry —n(r, ) A(r t)

= jpara(r/ t) + jdia(r' t) (91)
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As in the static case we have a paramagnetic and diamagnetic current density
that contributes to the full physical current. The continuity equation in this case
becomes

3n(r,) = =V - (jpara(r D) + i (r, 1)) (92)

As in the purely longitudinal (only scalar potentials) case, we can now derive how
the physical current changes in time as

9j(r, t) = N%/ (Y )VY +¥Y*V(9,Y)) dry...tn — A(r, t)n(r, t) — A(x, t)7i(x, t)
= NS‘E/ (HY*)VY —¥*V(HY))dry...txy — A(r, )n(r, t) — A(r, t)(V +5)

—n(A+V0) +A(Vj) + (V@A) + (jpara ® A)% + Fr(y] + Fw(¢],
(93)

where Fr and Fy are the stress forces due to the kinetic and interaction potentials,
respectively (see Sec 3.1 for details).

2.4.1  Time-Dependent Current Density Functional Theory

Let us next consider the according generalization of (TD)DFT to the above time-
dependent magnetic Schrodinger equation. A first question that arises, especially
after the discussion about the basic quantities in CDFT in Sec. 2.3.1, is which quan-
tity should one pick? In the following we will take the full physical current density
j(r, 1), which is the standard choice in the time-dependent case. To establish the
basis of time-dependent CDFT (TDCDFT) we follow Vignale [121]. Similar to his
derivation we will directly consider the extended RG theorem for TDCDFT, which
implies a RG result for TDCDFT. That is, We first consider the more general ques-
tion of A-representability, i.e., under which conditions can we reproduce a given
time-dependent current density with a Hamiltonian (90)? From this we can then
deduce the fundamental one-to-one correspondence of TDCDFT.

Let us assume that we have a given time-dependent current density j(r, t) and
some general interaction W’ (not necessarily the Coulomb interaction). We then
ask the question, whether we can reproduce this current density as expectation
value of a time-dependent wavefunction ¥’ () that is the solution to a time-dependent
magnetic Schrodinger equation. Without loss of generality we choose a gauge
where we fix A(r, t) such that any scalar potential vanishes (see Eq. (89)), which is
called the radiation gauge [2, 121]. We therefore have a Hamiltonian of the form
of

N
EZ (—iVi+ A/ (x, 1) + W (94)
i=1

By controlling the current density, we also control the change of the density through
time by the continuity equation. We, however, do not control the total time-dependent
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density, which depends on the initial state. That is, by choosing a specific initial
state ¥/(0) to give a specific density n(r,0) at t = 0, we can also control n(r,t),
which leads to the control of the full current four vector (n(r,t),j(r,t)) [121]. If we
then consider the EOM for the current density (93) for the chosen initial state, we
can follow a similar construction as in the case of the extended RG theorem based
on the EOM for the density. That is, if we assume that all quantities are Taylor
expandable in time about t = 0 with finite convergence radius, we can construct a
unique external vector potential A’(r, t) that reproduces a given four current den-
sity (n(r,t),j(r,t)) [121]. The vector potential will depend on the initial state. We
therefore have again initial state dependence. If we then perform a gauge transfor-
mation, which can also affect the initial state, we can from the above determine in
general the pair (v(r, t), A(r, t)) that reproduce the given time-dependent densities
(n(r, t),j(r, t)) in another gauge.

This A-representability result has two immediate consequences. Firstly, since for
a given gauge and initial state the pair (v(r, f), A(r, t)) is uniquely determined, we
find

1:1
— F(1). (95)
Therefore the wavefunction becomes uniquely determined by the external pair and
initial state, i.e.

+—— (v(r,t),A(r, 1))

Y (t) = ¥[¥o,v,A](t), (96)

and so do all observables. This is the extension of the RG result to the time-
dependent magnetic Schrodinger equation, which was obtained already before by
Ghosh and Dhara [122]. Secondly, if we choose an initial state ¥y and propagate
this initial state with the Pauli Hamiltonian of Eq. (90) with all (inequivalent) pairs
(v(r,t),A(r, t)), we generate all possible pairs (n(r,t),j(r, t)). If we then choose a
non-interacting initial state ®g that obeys

(Folfi(r)[Yo) = (Polfi(r)|Po), (97)

where we used the definition 71(r) = YV, §(r — r;) for the density operator, we can
reproduce all these pairs with the help of an auxiliary non-interacting magnetic
Hamiltonian of the form

A N1,

Hs(t) = Z (2 (—zVi+A5(ri,t))2+vs(r,~,t)> , (98)
i=1

and appropriately chosen effective fields

vs (1, t) = vs[ Do, 1, j](x, 1), (99)
Aq(r, t) = Ag[ Do, 1, j](x, 1). (100)
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This allows us to define in analogy to TDDFT in Sec. 2.2.1, the KS scalar and vector
potentials as

vkslv, Yo, o, n,jl(x,t) = v(r, t) + vy n](r, t) + vx[FYo, Do, 1, j] (1, 1), (101)
AKS [AI ‘FOI (DO/ n/ j (r/ t) A(r/ t) + AXC [‘{[O/ q)O/ n/ j] (l', t)/ (102)

and we can predict the interacting density by self-consistently solving the time-
dependent KS equations in TDCDFT (suppressing functional dependencies)

i01pi(r, 1) = <; (—iV;+ Aks(r;, 1,‘))2 + vks(r;, t)> ¢i(x, 1) (103)

together with the density given by Eq. (43) and the gauge-invariant physical cur-
rent density by Eq. (91). Note again that these fields are only defined up to a gauge
transformation and thus by choosing, for instance, the above radiation gauge (see
Eq. (89)), we can even get rid of the scalar part vgs(r, t). At this point the ques-
tion arises whether one could actual avoid the vector potential as well and just
work with a scalar potential as in TDDFT. To answer this question we recall the
Helmbholtz decomposition [16] which states that an arbitrary vector field F(r, t) can
be written as the sum of a longitudinal (curl-free) and transverse (divergence-free)
component as

F(r,t) = Fr(r, t) + Fr(r,t) (104)
where
Fulrt) = 47TV/ \r—r’| ’
V' x F(r,t)
/7
Fr(r, t v /d paa (105)

Similarly, any current density can be expressed as j(r,t) = j, (r,t) +jp(r,t). Yet
with only the scalar potential we have the EOM of Eq. (59) for the non-interacting
system and we can only control the density. The density, however, only determines
the longitudinal part of the current as can be seen by the continuity equation

on(r,t) = =V -j, (r,t). (106)

Hence, the density n(r, t) gives no information about the transverse part of the
current density and we would not be able to reproduce the full gauge-invariant
current. Of course, this was not a problem in the proof of the RG theorem but
shows an obvious issue in the relation between current densities and scalar poten-
tials. It is in general impossible to find a scalar potential v(r,t) that yields a pre-
viously specified current density j(r, t), except for some special cases [123]. This
issue (recast as transversal contributions to the xc forces) will become important
again in Secs. 3.2.3 and 3.4.
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There are only a few dedicated approximations to the xc scalar and vector poten-
tials available in TDCDFT. An approximation for the xc vector potential was first
derived through linear response theory by Vignale and Kohn [124]. This was a
spatially local but frequency dependent approximation which has certain patholo-
gies [16]. Later, this functional was re-derived in a hydrodynamic fashion [125-
127]. Yet in most cases the xc vector potential is discarded and merely an adiabatic
functional for the scalar part from DFT is employed [74]. However, there are sev-
eral known exact constraints that the xc potentials should obey and thus could be
useful for functional construction as for the ground state case [128].

Exact constraints

According to Newton'’s third law, the rate of change of the total momentum P(¢) of
a many-body system is equal to the external force acting on it and internal forces
of the system should have no contribution to the net force. Given that the net force
due to the interaction potential is zero, the net force arising from the set of xc
potentials (vxc(r, t), Axc(r, t)) should also equal zero [16]. This exact property of the
xc potential is the zero-force theorem. It holds also in TDDFT where the external
forces are purely longitudinal (see also Sec. 3.2.1). Similarly, the rate of change
of the total angular momentum L(#) of a many-body system depends solely on
the net torque due to external forces while the net torque due to internal forces
vanishes. In TDDFT this is not always the case, since we saw that the current
densities of the interacting and the KS system are in general not the same given
that their transverse contributions could be different. Hence the net torque due to
the xc potentials could be non-vanishing.

However, for TDCDFT this problem does not arise. It is suitable to define the
force terms in the KS system, Fs(r, t) = F(r, t) + Fy(r, t) + Fxc(r, t), with the exter-
nal, Hartree and xc-forces expressed as (see also Sec. 3.2.3)

F(r,t) = —=Vo(r,t) —A(r,t) + v x [V X A(r, 1)], (107)
Fy(r, t) = =Voyu(r,t), (108)
Fio(1,t) = = Vs (1, 1) — 0t Axc (1, £) + v X [V X A (1, )] (109)

where the velocity v is defined as v(r, t) = j(r, t) /n(r, t). We recall that in TDCDFT
the denstity and current density are exactly reproduced by the KS system unlike
in TDDFT. The zero-force theorem in TDCDFT can thus be generalized to

/drn(r,t)FXC(r,t) =0. (110)

Given that the current densities of the interacting and the KS system match, the
total angular momentum of both systems are equal and one has that

0= dL(t) — aLs(t) = / den(x, ) % [E(r, t) — Fo(r, £)]

= — /drn(r,t)r X [Fy(r,t) 4+ Fxe(r, 1)]. (111)
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Because the net torque that comes from the Hartree force vanishes, we are left with
the zero-torque theorem for TDCDEFT [77]

/drn(r,t)r X Fye(r, 1) = 0. (112)

The zero-force and zero-torque theorems intuitively make sense since they come
from the fact that the xc force can be expressed as the divergence of a stress tensor
nEeu = Y VPxyj [129]. Thus any accurate approximation to the xc scalar and
vector potentials should fulfill these exact constraints. One also sees from Egs. (107)
and (109) that both functionals should be designed together to be consistent. An
approximation that fulfills these constraints is discussed in Sec. 3.2.3.



UNIFYING PERSPECTIVE: FORCE-BASED APPROACH TO
DENSITY FUNCTIONAL THEORIES

As we have seen, the different versions of DFTs, namely, ground state DFT (Sec. 2.1.2),
TDDFT (Sec. 2.2.1), CDFT (Sec. 2.3.1) and TDCDFT (Sec. 2.4.1), have quite distinct
foundations and consider different physical situations. In the case of DFT and
CDFT, the minimum energy principle was used for different Hamiltonians while
for TDDFT and TDCDFT the EOMs of the respective time-dependent Hamiltoni-
ans were employed. What they all share is that they employ the KS construction to
find approximations to the unknown xc potentials. They do not necessarily have to
be based on the KS formalism, as an orbital-free formulation is possible, however
it is not very accurate so far [130, 131]. From this perspective it seems relatively
straightforward to use approximations from one theory in the other ones. Due to
the abundance of approximate xc functionals in ground state DFT (and the lack of
approximate functionals in the other DFTs) it is common practice to also employ
these functionals in the other settings. However, employing these ground state
functional approximations in the other situations makes them less reliable [132].
Since each of the discussed DFTs is based on different mappings, there is apriori
no reason to assume that the same approximations can be used in different the-
ories. For instance, using an adiabatic DFT approximation in TDCDFT can lead
to violations of the zero-torque theorem or even the zero-force theorem [133] and
many other exact relations.

The simplest way to rectify this situation is to develop dedicated functionals
and xc potentials for each of the different DFTs and to not use them in other set-
tings. A different yet more efficient way would be to find a unifying approach that
uniquely determines the xc potentials in all these different DFTs. Then one can
develop approximations within such a unifying framework, which makes these
approximations automatically applicable to all the discussed DFTs. The latter ap-
proach is the one that we will pursue in this chapter. Of course the question is
which unifying framework to use. Here a look at classical physics can help. If
we consider classical mechanics, there are several equivalent ways of representing
the same physics. Originally Newton developed a force-based approach that con-
siders EOMs, later the Lagrangian perspective based on the action principle and
the Hamiltonian formulation based on the energy principle were introduced [134].
This equivalence indicates that we should be able to do the same and represent,
for instance, the minimum energy (ground state) problem of the static Schrodinger
equation as a force balance problem. An idea that was already highlighted by
Tokatly [77] and Runge and Gross [14] . If we are be able to recast the static prob-
lem also as an EOM problem of forces, then naturally we have all the four different
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DFTs captured within the same framework and this is exactly what we will do. The
minimum energy principle of DFT and CDFT will only be the basis from which
we can deduce that there is an equivalent force balance that determines the xc po-
tentials. This will allow us to seamlessly connect all the different DFTs via their xc
potentials and derive an orbital dependent approximation for the exchange part
of the xc potentials. We then show how these approximations relate to the most
common ground state DFT approximation, namely the LDA.

This chapter is divided into four sections. In Sec. 3.1 we derive the EOMs of
the one-body reduced density matrix (1-RDM) which contains all the necessary
EOMs of the different DFTs as limiting cases. From the EOMs we establish in
Sec. 3.2 exact expressions for the xc potentials of the different DFTs based on the
idea of a local force balance and subsequent functional approximations of exact-
exchange type. Further in Sec. 3.3 we show how in the homogeneous case these
EOM-based approximations lead to the usual exchange LDA potential that we saw
in Sec. 2.1.2. In Sec. 3.4 we then investigate whether we can use more complex xc
potentials to increase the accuracy of lower-lying DFTs, e.g., use TDCDEFT vector
potentials in the TDDFT setting.

3.1 EQUATIONS OF MOTION: FROM THE REDUCED DENSITY MATRIX TO THE
DENSITY

In the TDDFT and TDCDEFT case we saw that time-dependent quantum many-
body systems can be described by local force equations, since they allow to estab-
lish the corresponding one-to-one correspondences. Such a force based perspective
is not new but was already introduced by Runge and Gross [14] and later on by
Vignale [121, 125, 135] and Tokatly [75, 77, 136, 137]. The authors also nicely con-
nected this perspective to quantum hydrodynamics, where the density and density
currents are interpreted as a fluid and the different force terms are interpreted as
compressabilities, shear and torque modules of the quantum fluid. In this way
they deduced certain approximations to the respective xc potentials [77, 125, 129].
In this section, we present the fundamental EOM of the 1-RDM from which we
can deduce all the other necessary EOMs. The basic quantities we intend to focus
on later are the particle and current densities, which are all one-body quantities.
Thus their EOMs can be deduced from the EOM of the 1-RDM. This allows us
to establish a direct relation between the basic functional variables (density, para-
magnetic or physical current) and their corresponding potentials (scalar and/or
vector potential). To cover all situations discussed in the first chapter we consider
the magnetic Hamiltonian of Eq. (90) which we simply re-write as

N

A=Y hr,t)+W, (113)

—
=T+V

M=

I
—_
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to easily understand some derivations which will be done later. Naturally, we re-
cover the usual Schrodinger Hamiltonian when we set A = 0 and the static case
for time-independent Hamiltonians. Given that the Hamiltonian of Eq. (90) con-
tains only one- and two-body operators, a reduced form of the wavefunction that
still provides exact results for the expectation values of the Hamiltonian would
need to include at least two different particle coordinates. If we introduce the
spin-summed pth—order reduced density matrix (p-RDM), p € (1,...,N),

p(p)(rl, ) rp,ri, ) ,rp,t)

= Z /‘I’ X1+ Xp, Xpg1s - - XN, )

pX( (114)

01 Up

/
¥ (x, .. .,xp, Xpi1, -+ XN, E)dXp i1 ... dXN,

then we need at least the (diagonal of the) 2-RDM to calculate the expectation
value of some two-body operator B = Yi<jb(r;,1;). That is, the interaction energy
is given by [27]

(¥ (1) |W[¥E () ZZ/‘I’ X1, X2, ., XN, D) W(|t — 1) ¥ (X1, X2, . ., XN, t)dxy . . dxy

i=1j>i
= /P(z)(r,rzrrz,r,t)w(lr—r2|)drdr2,

where we use the notation x; = rj07 as in Chap. 2. For any one-body operator,
such as, the kinetic energy, the 1-RDM

p(l)(r,r',t) =N E /‘I’(xl,xz,...,xN,t)‘I’*(x'l,XZ,...,xN,t)dxz...de (115)

/
01,04

suffices. The expectation value of the kinetic energy then becomes
<T(t) ’T‘T(t» = % /‘F(Xl,XQ, ., XN, t) (—iV1 -+ A(I‘1, t))zT* (Xi,XZ, -, XN, t)dX1 coodxy

_1 / (—iV + A ) ) (F,1,8)|  dr

r=r

where we indicate that we set r = r’ after acting with the gradient operators. For
the external potential energy we find

(F(H|V(O)[¥F()) = N/‘F X1,X2, .-, XN, P)o(ry, )Y (x1, %2, ..., XN, £)dxq ... dXN

= / (r,1, t) dr. (116)
(r t)

The 1- and the 2-RDMs are connected via

2
p(l)(r,r’) =51 /p(Z)(r,rz, Y, 1)dr, (117)
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and the one-particle density is written as
n(r,t) = pa(r,x). (118)

This led to the idea that since we only need to know the 2-RDM of the many-
electron system to determine the energy, we can find the minimum by only vary-
ing the 2-RDM (the 1-RDM and the density are trivially connected to the 2-RDM as
can be seen above) instead of the whole wavefunction. However, a minimization by
varying over the set of all possible 2-RDMs is a very difficult problem [138] since all
the constraints the 2-RDM have to fulfill to correspond to a physical wavefunction,
scale exponentially with the number of particles [139]. So the exponential wall we
discussed in Sec. 2.1 reappears here again. This also applies to the 1-RDM [139],
but lifting the restriction of only pure states makes the N-representability condi-
tions for the 1-RDM much simpler.

Aside from the static case, the 1-RDM can be used also in the time-dependent
situations

iatp(l)(r, Y, t) = {h(r, t) —E(r’, t)} p(l)(r, Y, t)

(119)
+ 2/ [w(rz —1) —w(r — r’)] P(2) (r,12, 7,1, ¢) dryp.
Here the overline is to indicate that we take the complex conjugate of the op-
erator. We see from Eq. (119) that to propagate the 1-RDM one needs the time-
dependent 2-RDM. Note that sometimes a different normalization convention for
the 2-RDM is used, for example, in Ref. [140]. It is not hard to realize that due
to the two-body interaction w(|r — r'|), the EOM of the 2-RDM will contain the
3-RDM. So too, the EOM of the 3-RDM will include the 4-RDM and so on till
one reaches the complete N-RDM. This chain of EOMs is known as the Bogoli-
ubov-Born-Green-Kirkwood—-Yvon (BBGKY) hierarchy. The usual way to use this
hierarchy is to truncate the chain at a suitable level. This is usually done after the
EOM of the 2-RDM. However, if we have mapping theorems as in the different
DEFTs, then we know that we can express the higher order RDMs as functionals of
the corresponding densities. In this way we can stop at any order and we can close
the BBGKY hierachy by employing the basic mapping theorems. What is then left
is to find is an approximation for the unknown p-RDM terms. The KS construction
does so by using the respective terms from an auxiliary non-interacting system.
Let us next connect the basic quantities of the different DFTs to the 1-RDM
and its EOMs. The continuity equation can then be derived from the EOM of the
1-RDM by associating

i0;n(r,t) = 001y (r,¥', t)| . (120)

r'=r

After acting with the operators on the right hand side of Eq. (119), we set ¥’ = r.
Hence the whole interaction part drops out as well as the terms including the
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external potential v. We are then left with the terms involving the kinetic operator

9 (r,t) = 5 [(iV + A(r t))?

— (V' —A(Y, t))z] 0(1) (r,7,t)

N —

(121)

4
r'=r

where V acts on the coordinate r and V' on r'. To evaluate the remaining terms
we note that the V and V' in the kinetic term both act on the vector potentials and
the wavefunction such that we have

(£iV —A)? = —V?Fi(V-A) F2A-V + A% (122)

Therefore the terms proportional to A? also cancel out. As a result we obtain
the continuity equation (92) where the one-particle (physical) current as in the
previous chapter can be split into a paramagnetic and a diamagnetic contribution
and written in terms of the 1-RDM as

j(ri,t)
1

= 5; [(V—iA(ry, 1)) = (V' +iA(x, 1)) o) (11,11, 1)
ri=r;

(123)
= N%Z/‘I’*V‘I’dxz... dxy — A(ry, t)n(ry, t)
(%1

= jpara (rlz t) + jdia (1‘1, t)-

If we take A = 0 we recover the continuity equation of the usual Schrodinger
equation, that is, Eq. (44).

We derive the EOM for the current densities by taking the time derivative of
Eq. (123) and by using the EOM of the 1-RDM (119). For notational clarity we
introduce some relations regarding the application of the gradient operator which
occur in the derivation of the EOM of the current density

V(V-A)=((VRV)A)+ (V-A)V
V(A-V)=(V®A)V+(A-V)V (124)
VA? =2(V®A)A+ A’V
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where ® denotes the dyadic(outer) product of two vectors. By setting r' = r in the
EOM of the current density, a few terms get cancelled and by making use of the
continuity equation (92) we get

(e ) = — n(r, )3A(x t) + % (V —iA(r, 1))
—(V' +iA(r,1))] 0oy (r, ¥, 1)

= (V-7 [(iV LA )

. (1V’ ] (125)
+A(rt)(V ( t)
— (Vo(r, t) + 0:A(x, t))n(r, t)

-2 /(Vw(r' —1))p) (1,1, t)dr.

o1 r,r,t

'=r

We can already identify different force terms, like the interaction force

Fyw[¥](r,t) = —2/(Vw(r’ —1))p)(r, v, 1,1, t)dr, (126)

and the (gauge-independent) force contribution from the electric field E = —(Vov +
d:A) that couples exclusively to the density. In the first term involving the 1-RDM
in Eq. (125), we separate the parts including the vector potential A and the terms
that remain give rise to the kinetic force term,

Brl¥](5,t) = 4(V = V)(V2 = V2o (5.0, 0)|

N (127)

= ORY [ ((-7P) V¥ + ¥ VYY) dxa.. dx
ag

Putting all the remaining terms together yields the contribution from the Lorentz
force and further internal forces involving the vector potential as
~E B
. ——~ ——~ L&
2 == (Vo+3A) 4 x [V x A +(A®)V (128)

+(j+nA)® A)V + Fr[¥] + Fw[Y¥].

We have obtained the EOM for the current, the force balance equation. This EOM can
also be found in index notation and second quantization form in, e.g., Ref. [27]. It
is easy to get the standard textbook expression of the Lorentz force by introducing
the velocity v = j/n. To get to the compact form of the force balance equation
above we used the vector identities

(A®j)V = (V-j)A+(-V)A, (129)
jx(VxA)=(V®A)j—(j- V)A. (130)
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where

(@2B)¥) =¥ ab; (131
i Tor
By some non-trivial manipulation the forces due to kinetic and interaction effects
can be represented in a form of divergence of a stress tensor, which describes the
internal stresses in a fluid moving with velocity v [75]. Therefore the integrals of
these forces automatically vanish [ Frdr = [ Fy dr = 0 in accordance with New-
ton’s third law. A different way is to consider that for Fyy the interaction potential
w(r —r) is symmetric under the exchange of r <> r/, and therefore the full space
integral has to vanish. Further, we see that the integrated forms of the first two
terms on the right hand side of the force balance equation (128) give the Lorentz
force [27, Eq. (3.38)]. The remaining two terms are explicitly expressed in diver-
gence form. This implies that by integrating the force balance equation over the
entire space, one gets the classical force expression and all quantum mechanical
contributions cancel out as purely internal effects in accordance with the corre-
spondence principle [16].

To fully cover the various settings which were discussed in the previous chapter,
we also determine the corresponding EOM for the paramagnetic current

dtjpara = — V0 + (V ® A) (jpara — nA)
<
+ (jpara ® A)V + Fr[¥] + Fy [¥].

While the paramagnetic current only appears explicitly as a basic quantity in
ground state CDFT, and that here we consider a general time-dependent setting,
we will see in the following that we can employ this gauge-dependent expression
to find a definition for the xc potentials also in this case. Also for the other static
DFTs we will see that we can use the respective EOMs to establish an exact ex-
pression of the corresponding xc potentials, even for a (hypothetical) ground state
CDFT with the physical current.

(132)

3.2 EXACT XC POTENTIALS FROM THE FORCE BALANCE EQUATION

In the following we now do two things. Firstly, given that the basic one-to-one
correspondences have been established (Chap. 2), we employ the EOM of the 1-
RDM for an interacting and an auxiliary non-interacting (KS) system to establish
defining relations for the different xc potentials. This does not only work for the
time-dependent setting but also for the static setting, where the one-to-one corre-
spondence based on the energy formulation guarantees the existence of a unique
xc potential. Besides, we will recover several of the previously discussed exact con-
straints. Secondly, because all of these defining relations are given in terms of the
EOM of the 1-RDM, we can easily connect them and show how approximations
from one DFT setting have to be adopted to be applicable to the others. We will
do so specifically for the local exchange approximation [141].
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3.2.1 (Time-dependent) Density functional theory exchange-correlation potentials

We start with the ground state DFT case where only static, scalar external po-
tentials are considered. In this setting we rely on the Hohenberg-Kohn theorem
discussed in Sec. 2.1.2 which guarantees the existence of a well-defined density-
potential mapping, in order to match the densities n[¥] = n[®] = n of the inter-
acting and the non-interacting systems, respectively. In the ground state case the
time derivative of any observable is zero. This applies also to the force balance
equation (128) of the individual systems

0ij[¥] = —nVo+ Fr[¥] + Fw[¥] =0, (133)
04js|®] = —nVous + Fr[P] = 0. (134)

One will usually not make use of an equation for the current in this setting, given
that a scalar potential enables us to control only the particle density and not
the current density. However, the only current terms that appear are the time-
derivatives, which by construction are zero. This only becomes an issue in the
time-dependent setting where the time-derivative of the current is no longer zero.
We now subtract Eq. (133) from Eq. (134) to gain access to the Hxc potential which
is defined as vy, = vs — v (see also Sec. 2.2.1),

TZVUHXC = _Fch [CD, ‘Y] = FT[q)] — FT [IY] — FW [‘P] (135)

Since the many-body wavefunctions ¥ and & of the interacting and auxiliary non-
interacting system, respectively, are uniquely determined by the density, the inter-
action and stress tensors are functionals of the density as well, i.e., Fyyy [®, ¥] =
Fixc[n]. Thus Eq. (135) is an exact density functional definition of the Hxc poten-
tial in ground state DFT. At this point we highlight the main difference to the
standard energy-based approach to DFT. In that approach the Hxc potential is ob-
tained by making a functional derivative of the energy functional. However, the
exact ground state energy functional is non-differentiable with respect to the den-
sity [142], so regularization techniques have to be employed to circumvent this
issue [118, 143]. In our present approach, we do not have to deal with these differ-
entiability issues as vy is expressed directly in terms of the internal stress tensors.
The form of Eq. (135) as a means of obtaining vy has been used before in [77] and
[141] where the internal stress tensors of both the interacting and non-interacting
systems were involved. Eq. (135) holds exactly and we also realize that if ® and
Y are ground state wavefunctions satisfying the Schrodinger equation without
vector potential, then Fyy[®, ¥]/n is purely a gradient field, so it has only longi-
tudinal contributions (see also discussion about the Helmholtz decomposition in
Sec. 2.4.1). This becomes important again in Sec. 3.4 where we investigate whether
we can get more accurate approximations for (TD)DFT by using a non-interacting
auxiliary system with a vector potential in combination with the usual KS scalar
potential. We have seen that the xc potentials can usually be separated into an
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exchange and correlation part. This is also the case here and from Eq. (135) Upxc
can be expanded into a Hartree-exchange and a remaining correlation part as

anHXC = —FW [@] + FT[qD] — FT [‘Ij] + FW [CI)] — Fw[T], (136)
—Dpx — e

nVopx = —Fy|[®], (137)

nVo. = Fr[®] — Fr[¥] + Fi[®] — Fw[Y]. (138)

Here Fy [®] means that we calculate the interaction-stress tensor defined in Eq. (126)
not with the exact interacting wavefunction but with the exact non-interacting

wavefunction. The Hartree-exchange potential vy, from Eq. (137) is a functional

of the non-interacting wavefunction ® which is usually assumed to be a Slater-
determinant. Therefore vy, already counts as a full-fledged orbital-dependent ap-
proximation to the xc potential, called the local-exchange approximation [141]. One

thing that is not a priori clear is whether the functional derivative of the well-
known exchange approximation of the exchange energy functional [144] actually

yields this local-exchange potential. The EOM-based local-exchange approxima-
tion has only been shown to coincide with the energy-based exchange approxima-
tion in the case of a spin-singlet two-particle system [141].

Let us now consider the time-dependent situation and assume a time-dependent
scalar potential in the interacting and auxiliary non-interacting systems. This is the
usual setting of TDDFT. To derive a defining relation like Eq. (135) that works in
this setting, we consider the second-time derivative of the density instead of the
force balance equation as already done by Runge and Gross (see also Sec. 2.2.1).
What we then need to match are the time-dependent densities of both the interact-
ing and the non-interacting systems. Using the RG theorem [14] of TDDFT and its
extensions [15, 90, 145] we know that we can match the densities of these different
systems. Starting from the continuity Eq. (44) we make a further derivative to get
0?n = —V - 3;j, where the EOM of the current appears again. Using this EOM
that we already considered in Sec. 2.2.1 to establish the extended form of the RG
theorem, we have for both systems

0’n = V(nVo) — V(Fr[¥] + Fw[¥]), (139)
0?n = V(nVus) — VFr[®]. (140)

Assuming that both have the same time-dependent density throughout time and
subtracting the two equations above leads to Eq. (135), which we restate here again:

V(nVopxe) = — V[, ¥]. (141)

Again, due to the RG theorem and its extensions we can express the states by
the density (and the respective initial states), which implies that VFpy [®, ¥] =
VFixc[®o, ¥o, 11]. Such an equation can be solved efficiently and a numerical con-
struction that gives exact results of vy, for two- and three-dimensional many-
electron systems has been demonstrated by Nielsen et al. [146].
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We see that for the static case we could also have used the divergence of the
local-force-equation (135) since Fyy./n is purely longitudinal. In a static setting,
the two defining relations (135) and (141) contain exactly the same information
and so they will both lead to the same approximations. Yet in a time-dependent
setting, Eq. (135) cannot be used given that the scalar potential cannot control the
full current density, but only its longitudinal part. In that case the EOMs of the
interacting and the non-interacting systems cannot be made to match at all times.
That is why we need to work with Eq. (141) in TDDFT.

Eq. (141) can be expanded into its different Hxc parts as we did before and the
local-exchange approximation becomes [141, Eq. (24)]

V(nVouy) = —VEy[D]. (142)

Since we no longer have that Fiy. /7 is purely longitudinal, we see that we cannot
apriori use an approximation based on Eq. (135) in the time-dependent setting.
This again highlights possible problems that arise when using ground state DFT
approximations in TDDFT. On the other hand, using a TDDFT approximation
based on Eq. (141), such as the local-exchange approximation of Eq. (142) in the
ground state case is perfectly valid. We will see that we find such nice consistencies
throughout by going from more general DFTs to more specialized DFTs.

3.2.2  Paramagnetic current density functional theory exchange-correlation potentials

We have established defining relations for the xc potential in (TD)DFT including
static and time-dependent external scalar potentials. Let us now look at CDFT
which we know is a natural generalization of DFT to cases including magnetic
fields. The density quantity corresponding to the external potential A that appears
in the Hamiltonian of Eq. (90) is then the current density for which different forms
could be chosen to get determining equations for the exact xc potentials depend-
ing on the setting. In principle, the xc potentials are obtained as the functional
derivatives of the energy expression with respect to the density and current, while
keeping the potentials fixed [107, 116]. However, given that the vector potential
explicitly appears in the expression for the physical current (73), the functional
derivative is no longer viable and as we saw in CDFT (Sec. 2.3.1), it is rather
the paramagnetic current that must be taken as a corresponding density quantity.
Therefore in this section we match the paramagnetic current of the interacting
and the non-interacting systems to get a defining equation for the xc potentials.
That this is indeed possible relies on a weaker version of the Hohenberg-Kohn
theorem based on the work of Vignale and Rasolt [107, 116] (see also Sec. 2.3.1).
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From Eq. (132) the EOM for both the interacting and the non-interacting reference
system are given as,

dtjpara = — V0 + (V @ A) (jpara — nA)

+ (jpara © A)V + Fr[¥] + Fy [¥], (143)
dtjpara = — nV0s + (V @ As) (jpara — 1As)

+ (jpare © A9V + Fr[@]. (144)

By subtracting the two EOMs above and defining vpy. = vs — v and Ay = A; — A

V0 = (V ® Axc) (jpara — 1A — nAxc)

< (145)

- (V & A)nAxc + (jpara & lkxc)V - Fch [q)/ ‘Y]

we get a defining equation for vpy. and A, for matched densities and paramag-
netic currents. Again we can express everything in terms of the basic quantities of
CDFT due to Vignale’s results, that is Fyyx[®, ¥] = Frxc|jpara, 2] It is now possi-
ble to determine vy, and A, separately by using the Helmholtz decomposition
that splits a vector field uniquely into a curl-free (longitudinal) and a divergence-
free (transverse) component. This same decomposition was recently suggested in
Ref. [147] so as to make magnetic-field functionals, source-free. The internal-force
terms are decomposed as Fyy./n = —V¢ 4+ V x a with the curl-free component
—V ¢ and the divergence-free component V x a. If we now attribute vy = ¢,
then the vector potential has to satisfy the following equation

<V & Axc)(jpara —nA — Tlec) — (V ® A)VIAXC
g (146)
+ (jpara ® 1\xc)v =nV x a[@,‘l’].

From these, the corresponding local-exchange approximation to the potentials are
obtained as vy = @x[P] and

(V@ Ay) (jpara — A — nAy) — (V ® A)nAx
< (147)
+ (jpara ® Ax)V = nV x ax[P].
We notice that if we consider the limit of no external vector potentials we get back
the local-exchange approximation of Egs. (137) and (142).

When the densities and the paramagnetic densities are made to match via the
continuity equation, this gives rise to a condition for A,., which in Ref. [148] was
termed a "remarkable identity". Given that the densities n[®] = n[¥] are made
to match, hence their time-derivatives also match. This implies that V - j[®] =
V -j[¥] from the continuity equation (92). If we now assume that the paramagnetic
currents are the same, this gives V - (nA;) = V - (nA) and consequently

V- (nAx) = 0. (148)
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As such we get a further condition for A, that is valid in the paramagnetic CDFT
setting. This new condition (148) can be considered as a further form of gauge fix-
ing that comes together with a loss of gauge freedom for A,.. This gauge freedom
was lost from the start by considering jpara which is not a gauge invariant quantity.
This reduced freedom in the choice of Ay, when matching paramagnetic currents
might also be the reason why we obtain a rigid balance equation like Eq. (145)
rather than an evolution equation that we get for A,. in the time-dependent case
of Sec. 3.2.3. Note that once we match the paramagnetic currents and the densities,
the "remarkable identity" Eq. (148) is valid both for the ground-state and the time-
dependent setting. In the ground-state case, V - j|®] = V - j[¥] = 0 is additionally
valid. For a time-dependent setting, Eq. (148) can be fulfilled at every time by
treating it as a gauge condition and by choosing a corresponding time-dependent
gauge. However, such a time-dependent gauge field A(r, t) also influences the
scalar potential as we saw in Eq. (85), thus it would no longer be possible to simul-
taneously fulfill vy = @, where ¢ is determined by the longitudinal xc force. All
these indications support the fact that the relevant current density quantities to be
used are the physical current for a time-dependent setting and the paramagnetic
current for ground-state CDFT.

By considering a new scalar potential u = v + 1|A|? [114] it was noted that
this provides a concave ground state energy functional that fits into Lieb’s convex
conjugate formulation [43] that was adopted to static CDFT. This is also benefi-
cial in the present EOM-based approach as it simplifies the expression for the
xc potentials (145). By using this new scalar potential we get a term ;V|A[|* =
(A-V)A+A % (VxA) =(V®A)A causing the terms quadratic in A, A; from
Egs. (143) and (144) to drop out. This gives us a simplified form of (145) with the
new scalar xc potential upy. = s — u

%
nquxc = (v ® Axc)jpara + (ipara ® AXC)V - Fch [(I), ‘Y] (149)

We recall that the vorticity (82) was considered as a basic variable in static CDFT [107].
Therefore, when considering an xc potential that matches the paramagnetic cur-
rent and the density like before, then the vorticities of the systems also agree by
definition.

3.2.3 (Time-dependent) current density functional theory exchange-correlation potentials

In the case of general time-dependent electromagnetic fields we consider the phys-
ical current (204) in order to match the systems and derive the respective deter-
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mining equations for the xc potentials. We start by repeating Eq. (128) for both,
the interacting and the non-interacting systems,

3= —n(Vo+9A) +jx (VxA) + (A2j)V

+((j+nA) © A)V + Fr[¥] + Fw[¥], (150)
91j = — n(Vos + 0tAs) +j x (V x As) + (A ®j)%

+((+ nAs) ® AV + Fr[@]. (151)

To match the currents of both systems in the time-dependent case we rely on
Vignale’s extension of the RG theorem to TDCDFT [121] (see also Sec. 2.4.1). In
the ground state case, such an extension for the Hohenberg-Kohn theorem that
includes the physical current is not available to date [114, 115, 149]. Apart from
the physical current j, the density n of the interacting and non-interacting system
will also be matched. For the time-dependent setting, due to the continuity equa-
tion, we see that it suffices to match the physical currents since the matching of
the densities follows straightforwardly. This is not possible in the ground state
case, since the time-derivative of the density that appears in the continuity equa-
tion will be zero naturally, thus the current and the density have to be controlled
independently.

Subtracting Eq. (150) from Eq. (151) gives the determining equation for the xc
potentials vpy. = vs — v and Ay = As — A

F
n(0tAxc + Vorxe) = j X (V X Axe) + (Axe ® (j +1A))V

- (152)
+ ((j + nA + nAXC) ® AXC)V - FHXC[q)/T]/

where Fyyy is defined as in Eq. (135) and we have Fiyy [, Y] = Frxc[Po, Yo, j, 1.
This equation was considered before in [77, Eq. (21)] but the dependence of the
internal-force terms on the xc vector potential was not expressed explicitly. Further,
making use of the same Helmholtz decomposition for Fyy. /7 as before, this gives
UHxe = ¢ and the vector potential has to fulfill the evolution equation,
—
10tAxe = j X (V X Axe) + (Axc @ (j +nA))V
“ (153)
+ (G + 1A +nAx) @ Aye)V — nV x a[®,¥].

By neglecting all correlation contributions from Fpy. as in Eq. (136), meaning we
set Fry [P, ¥] =~ Fy[P], we get a corresponding version of Eq. (153), where the
exchange part of the vector potential depends solely on the Slater-determinant
wavefunction of the KS system,
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Ew[®]/n = =V [@] + V x ax[®], (154)
vpx = ¢x[P], (155)
ndtAx =j x (V ><AX)+(AX®(j+nA))% (156)

—

+ ((j + nA +nAx) @ AV —nV X a[P].

This gives us the local-exchange approximation for the scalar and the vector
potential.

We note that the separation of scalar potential vty = @ from the vector potential
is simply a specific choice of gauge at this point. Actually, up until Eq. (152) there
was still complete gauge freedom for the choices of (Vpxc, A,.). What still remains
from the original gauge freedom is the possibility to add a time-independent gra-
dient field to the vector potential. Furthermore, the vector potential A, which is a
solution to the evolution equation Eq. (156), depends on previous instances of time
and so it already includes memory effects. The xc potential captures the transverse
contributions V x & to the Hxc force Fyy./n that are lost in the case where one
considers only the exchange potential from the longitudinal part of Fy,. /7 as in
Eq. (141). We note that it is advantageous that the determining relation for A
has the form of an evolution equation. For instance, if any part of the forces on
the right hand side of Eq. (153) is not balanced, this can just be absorbed into the
time-derivative 0;Ac.

We get an additional condition for Ay in terms of jpara due to the requirement
that the current densities should match j[®] = j[¥]. Hence, by definition of the
physical current density (204), we get the condition

jpara [(I)] - jpara [‘Y] - nAxc- (157)

Furthermore, we know that the initial states (®g, ¥o) and the initial density fix Vpgxc
(by fixing Fpy) and Ay (by Eq. (157)) up to a gauge at the initial time. Therefore,
this allows us to determine A,. and approximations like Ay at the next time step
uniquely via the evolution equation (152). If we now integrate Eq. (152) over the
whole space and apply Gauss’ theorem like in Sec. 2.4.1 we arrive at the zero-force
and zero-torque conditions [77, Eq. (22)] that are always fulfilled by the exact pair
(vHxe, Axc) and are used as consistency checks for approximate potentials,

/ 1(9Axe + Vi) dr = / i % (V % Axe) dr, (158)
/nr X (0tAxc + VUpy) dr = /r X (j x (V x Ax)) dr. (159)

Let us now discuss about some peculiarity of the continuity equation in the dif-
ferent settings. Contrary to the stationary case, it is possible in the time-dependent
case to get the density n at every time from the fixed initial state and the physi-
cal current j by just integrating the continuity equation over time. This fits to the
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insight that the complementary variable of the density, v, can be removed from
the force balance equation (128) by making use of the gauge freedom of A (see
Sec. 2.4.1). Thereby making the physical current j the quantity to be naturally
matched between the interacting and the non-interacting system. This leads to an-
other gauge which sets vy = 0 such that, now the whole Hxc force Fyy, instead
of just its transverse part, is contained in Eq. (153). This is different from the gauge
choice we implicitly had by doing the Helmholtz decomposition. However, given
that the relation between the density and the current via the continuity equation
does not hold in the same way for the ground state setting, one must keep in mind
that a vector field Ay alone cannot control both quantities, hence a scalar potential
UHxc 1S needed in this case.

Let us briefly also come back to the static case. In Sec. 3.2.3 we have given the
defining relation for CDFT using the paramagnetic current and the density having
an appropriate mapping. Now, if we assume that we also had a mapping for the
static case that connects the physical current of the interacting system and of the
non-interacting auxiliary system, then we can indeed provide a defining equation
by Eq. (152), where we merely have to set d;A,c = 0. This makes the inversion for
the corresponding xc vector potential more involved, yet is valid nevertheless. We
also notice that in the case where the vector potentials are zero, this approximation
reduces the local-exchange approximation of Eq. (137). Keeping in mind that even
with a mapping that would establish CDFT for physical currents the usual way of
performing functional derivatives to obtain the xc potentials and vector potentials
becomes problematic, we see a further nice advantage of the EOM approach. We
will use this advantage also in Chap. 4.

3.3 LOCAL DENSITY APPROXIMATION FROM EXCHANGE FORCES

Having established defining equations for xc potentials in the different DFTs we
realize that all the different EOM-based local-exchange approximations reduce
to the local-exchange approximations of Egs. (137) and (142) in the limit of zero
external vector potential. However, how these local-exchange approximations cor-
respond to the well-established energy-based approximations is what we do not
know. It is only for the special case of two particles in a singlet configuration that
the EOM-based exchange approximation is known to be equivalent to the usual
energy-based exchange approximation [141]. In this section we want to give more
insight into how the EOM-based approximations are related to the energy-based
approximations. We do this by demonstrating that in the homogeneous case, the
local-exchange approximation reduces to the well-known exchange-only LDA of
ground-state DFT [9]. The way the derivation is presented here actually involves
a direct connection to the Xa method that we previously mentioned in Sec. 2.1.2,
which was introduced by Slater [54] as a simplification to the Hartree-Fock method.
In our derivation we see that the parameter a can be interpreted as the position-
choice of a reference point r).
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Single Slater Expression

As we recall, the wavefunction of the ground state for a non-interacting system is
usually a single Slater determinant of the form of Eq. (10). Hence we can express
the force terms for the non-interacting system in terms of this Slater determinant
wavefunction. Here we are particularly interested in the interaction force term
Fyy[®] which has the form of Eq. (126). This is the term that needs to be determined
to get an expression for vpy. For this we need to get the expression of the 2-RDM
in terms of the orbitals that make up the Slater determinant (10). We start with
the definition of the 1-RDM for such a single Slater determinant wavefunction
obtained after summing up all spin degrees of freedom and integrating out all
orbitals with particle positions r; ... ry,

N
pay(nr) =3 ) ¢i(r, )¢ (¥, 0). (160)
i=1
The 2-RDM can be expressed in as similar form as a determinant of the 1-RDM

1 1
P2)(r12, v, 15) = 5 (P(l)(r/f/)Pu)(rz/f'z) — 5P (L f/z)Pu)(rz/f/)) : (161)

We note that an extra 3 shows up in the second term due to the mixing of spin
coordinates between the particles with coordinates roq and ryoq7 for which only
half of them are not perpendicular because of their spin coordinates. Substituting
this into the interaction force term Fy, only the diagonal term remains

pio ) = 5 (n(r)ne) = 5 oy (o)) (162)
and we get interaction force term of Eq. (126) as
(@] = — [ (Yoot =) (n(e)a) — 5 oy ()] ) dn
:-qqgv/%mr—mqu)mg+;/Xun—mg)puﬂnmwzdm(wﬁ

= Fy[®] + K [@].

We see that the first term is simply the Hartree mean-field contribution to the force.
Let us now look into the second term which contains the pure exchange effects
from which we can define an effective exchange potential functional v,

anH = —FH[q)] (164)
= og[n](r) = /w(r— r2)n(rp) dry,
nVoy = —F[P]. (165)

Following, we look into the exchange force term by considering the special case of
the homogeneous electron gas.
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Local Density Approximation derivation

Following the standard references [3, 9], we consider the homogeneous limit, i.e
the 3D uniform-electron-gas case in a volume V = L3 with periodic boundary
conditions. This leads to spatial orbitals of the form

px(r) = \}Veik'r (166)
with k = (ny, ny, n;)2m/L. Each one of these orbitals is doubly occupied start-
ing with the lowest energy ny,ny,n, = 0,4+1,%2,... up to the Fermi surface
|p| = py = ks with ky = (37r2n)% (this is the "closed shell" assumption which re-
quires an even number of electrons). The energy levels are given as E(ny, ny, ny) =
h?/8ml?[(2ny)? + (2ny)* + (2n)?] which for large quantum numbers corresponds

to just the number per unit energy range. The 1RDM in this setting is defined as
* 2 ik-(r— /
oy (r 1) =2) pu(r)pr(r) = Vzek(r ¥) (167)
k k

where the sum is considered over all occupied orbitals k. If the volume is large
enough such that the spacing between consecutive energy eigenstates becomes
very small, the sum can be replaced by an integral

Vv

kf Vo5
;%/O dn; - dn = (3 dk = g5k dksindd6 dg

such that the 1-RDM becomes
1 - /
r, )= e1k~(r—r ) dk
Poy(nr) = 3 /|k<kf

—— /kf k* dk /n sin gelklr—rlcos? 4o /27T d¢
473 Jo 0 0

1 kg m e
- / K2 dk / sin ikl cost 4o
2712 Jo 0

1 [k 5 (2sin(k]r—r'])
:ﬁ/o k ( klr—r/| )dk
_ 1/kfksin(kr—r’|)dk
r—1'| Jo
1 sin(k¢|r —r'|) —ks|r — 1’| cos(k¢|r —1'|)

G p= o "

The integral over the sphere of radius kf = py/h has been transformed to spherical
coordinates (7,6, ), with the z-axis pointing to the direction r — r’ and 6 being the
angle between r — t’ and the k-vector. For an arbitrary density n(r), ks will depend
on the position r

ke(r) = (3n2n(r))°, (169)
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which raises the question of which point r, we should consider in the integral for
p(l)(r, r') above, since it depends on two positions, r and r'. The standard choice
of the argument of k £ is usually the mid-point between r and r' [9]. However, we
make this choice variable by choosing an linear combination of r and r/, that is,
ry = r+ A(r —r) = r+ Adr. At the end we will show the connection between
our parameter A and the standard derivation. We would now like to express the
1-RDM in terms of (ry, |[0r|). By substituting t = ks(ry)|r — 1’| = kg(ry)|dr| and
putting (169) into Eq. (168) we get

sint — tcost

> (170)

p)(r, 1) = 3n(ry)

We then make use of this expression to evaluate the exchange term in Eq. (126) for

the usual Coulomb interaction potential w(r —v') = |r — r'| !,

2 /
F, 2/( r/’>‘p (r,)| dr

. 2

r—r sint —tcost
_ 2 " n(ry)? <t3> dr’ (171)

9 or 5 (sint —tcost 2

A SIMEZPCOSTY dor.

2 mm“m)< B ) '

We do a transformation of this integral to spherical coordinates again, dér =
|61|? d|ér| dQ = \(5r\2,%f dQ and dQ) =sindddde, and get

2 it 2
szg or |or| n(r)? <smt t3tCOSt> 4rdO

2 ’(51"3 kf
2 T 2
_9 [ or n(ry) 2 (sint — tcost) 4rdo (172)
2J 10t 3m2n(xy))3 £
9 or (sint — tcost)?

= . n(ry)3 dtdO

2(3m2)3 J |ox|?

5

Given that the LDA exchange energy depends on the local density, which is as-
sumed to be slowly varying, it seems natural to relate the exchange force to the
local gradient of the density term. Hence we make a Taylor expansion of 7(r )3 at
T,

SN
[SSIIY

n(e)} = n(r)} —|—§/\(5r(Vn(r))n(r) +o (173)
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Due to the symmetry in the integral over Jr all even terms of the Taylor expan-
sion vanish in Eq. (172). We further consider only the first-order approximation in
Eq. (173). Recalling also the relation (165) we get the exchange force term as

y(x) = —n(r) Vo 1] (1)
9 or 4 1
~ 267)] |5r|2§/\5r(Vn(r))n(r)

1 . 2
_ 94An(r)s [ or <5r Vn(r)) dﬂ/(smt—ttcost) a4t

(sint — tcos t)?

= dtdQ

T 233m2)3 /o] \Jor] 5
42 (r) i
= g/\ <3>§n(r)éVn(r) =2A <3>§n(r)Vn(r)é (174)
3\« T
where the vector projection of an arbitrary vector a yields
]ﬁi]i;]ﬁ dQ = %Ta. (175)

The first order term of the local-exchange potential is simply the local-density
approximation from Eq. (174) and then comparing it to the usual LDA expression
v,PA Eq. (536),

1

oDA] (1) = —2A (7?;) 3 n(r)s = 20007 [n] (). (176)

If one chooses A = 1/2, meaning the density is taken at the middle point between
r and r/, this is exactly like in the usual energy-based derivation [9], and we recover
the usual LDA exchange-only potential. The competing values, « = 1and &« = 2/3
for the usual LDA in the Xa method, come from applying the uniform-electron-
gas approximation at different stages of the derivation. This ambiguity has led to
an attitude where a was taken as an adjustable parameter that can be fitted to em-
pirical evidence [55]. In our derivation we have denoted such variable parameter
as A which is related to « by A = 3a/4. In our derivation this parameter has a clear
conceptual meaning which is the point around which the Taylor expansion (173)
is made.

3.4 TRANSVERSAL EXCHANGE FORCES

We have derived local-exchange approximations for different DFTs based on the
corresponding EOMs. We have further seen that all of these approximations are
connected to each other and reduce, for the case of a homogeneous electron gas
with no external scalar or vector potential, to the usual exchange-only LDA. This
in turn also shows that the common practice of applying ground state DFT approx-
imations like the LDA to other DFT settings introduces further, often uncontrolled
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approximations. On the other hand, the more complex DFT settings usually in-
clude the simpler ones as special cases. For instance, TDCDFT has in general (v, A)
that control (n,j) and thus the cases where we only vary the scalar potentials (v,0)
are also included. The local-exchange approximation of TDCDFT then approxi-
mates the pair (#,j) while in the corresponding TDDFT setting the local-exchange
approximation only approximates n. In other words, since we saw in Sec. 2.4.1
that TDDFT is a special case of TDCDFT in the limit of no magnetic fields and
the same holds for the respective defining equations in Sec. 3.2, we can use the
local-exchange approximation of TDCDFT also in TDDFT. It seems plausible that
such a higher-lying approximation is more accurate when applied to a lower-lying
DEFT setting. Specifically, the local-exchange approximation of TDCDFT takes into
account also the transverse part of the exchange forces. It therefore becomes inter-
esting to investigate whether there are any transverse contributions present in the
exchange forces. We note that due to Eq. (135) for the static case, the total Fc
is purely longitudinal. This is, however, not necessarily the case for the exchange
part. Further, in the time-dependent setting, even the full Fy has a transversal
part for the case with only scalar external potentials.

We note that in the KS construction, nothing prevents us from using different
auxiliary systems as long as they allow to control the same objects as in the inter-
acting theory. That is, even if in the interacting theory there is no external vector
potential we can still use a vector potential in the auxiliary system to have the
same density and (paramagnetic) current density. For instance, for a non-zero Ay
as defined in Eq. (156), in this case all the transversal contributions need to come
from Fy [D].

To get an idea about under which conditions such transversal exchange forces
would appear, we in the following consider a general two-electron system. Since
the structure of the Slater determinant wavefunction is quite simple for this case,
it is easy to analyze. Two-electron systems are a common playground to analyze
properties in electronic structure theory as they provide a relevant connection
between the relatively simple one-electron systems and many-electron systems. In
a two-electron system, the spins of the electrons may be configured to form either
a singlet state or a triplet state [150]. We investigate the interaction force term
Fy[®] for these two cases. We conclude with an outlook to the general N particle
case.
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Singlet state

We consider two electrons and the wavefunction is simply obtained from Eq. (10)
as

1 $1(r0)  Pa(ro)
1) =——de
) V2 t(fPl(fZUZ) ¢2(f202)>

- \1@ (91(10)pa(1202) — 1 (1202 ) (x0)) (177)

and as we recall ¢;(x) = ¢;(r)x(c) where o € {1,]}. There are in total four pos-
sible arrangements of the spin wavefunctions so that two-electron wavefunction

®(ry,r2) remains antisymmetric [8]. One of these is the spin singlet S = (|1J
)— |41))/+/2 which combines with a symmetric spatial wavefunction to give
1
(1, 12) = NG (P1(r)P2(r2) + 2(1)¢1(12)) ® S. (178)

The remaining three spin wavefunctions are called spin triplet and combine with
an antisymmetric spatial wavefunction to form the triplet states which we will
look at in the next section. Since the wavefunction we consider can also be time-
dependent, the wave functions can in general be complex. We will, however, not
indicate the time-dependence explicitly but consider & = ®(t) and some arbitrary
time t. The particle and the current density for a singlet state are defined as

n(r) = 2[¢(r) (179)
j(r) = 23{¢" () Ve(r)} (180)

In polar representation the orbitals can be expressed as

¢(r) = \/n(r)/2e" (181)

and the 1-RDM for the doubly-filled orbital is then expressed

() = 20(r)¢" (') = y/n(r)n(x)e 2] (182)

with u(r) = j(r)/n(r). Substituting this 1-RDM in the expression for the exchange
force of Eq. (163) we get

Fy[®] = F, = By + % [(Vate—)n(n(r) ar
= Fu — %FH
1

We see that the interaction force has only Hartree mean-field contributions and
so is purely longitudinal. This implies from Eq. (156) that at all times Ax = 0 and
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that all exchange effects are accounted for by only vy. In this case, we gain no extra
information from making use of the xc potentials for TDCDFT in a time-dependent
setting where no vector potential is considered.

To make this observation more concrete we make use the Helmholtz decom-
position and see if the conditions for a vector field to be transverse are fulfilled.
We saw previously (154) that the interaction force could be decomposed into a
curl-free and divergence-free part Fy/n = —V ¢y [®] + V X ay[P] where

- L V- (Be/m) g (184)

= in |r—r/|

1/V’><(F;/n) ,
————=dr

4 |r —r'| (185)

ay =
are valid when (F,/n) vanishes faster than 1/r at the boundaries as r — oo. Hence
to see whether the interaction force has non-vanishing longitudinal and transverse
contributions, we check for V - (Fy/n) and V x (F,/n) respectively. Let us start
with

v. B
n

( V/ r—r)n(r)dr —|—(r)/(Vw(r—r'))|p(1)(r,r’)|2dr’>
(186)

where for the case of a singlet state we recall the 1IRDM from (182) and make use
of the relation 47t6%(r — ¥') = —V2|r — /| ! to get

F,
n

Vn(r, t)
2n2(r)

V.= =- /(Vzw(r —))n(r)dr — /(Vw(r —1))n(r)n(r') dr

1 / / 1 / / /
+ 2n(r) /(Vzw(r—r))n(r)n(r) dr’ + zn(r)/Vw(r—r)(Vn(r))n(r)dr

—/47'((53 r—r

= 27tn(r).

(r—1)n(r)n(x)dr

By substituting this result in Eq. (184) we see that the longitudinal part of the force
indeed has only Hartree contributions. We now check for V x (F,/n):

v % -V (—V/w(r— Fin()dr’ + 2711(1‘) /(Vw(f— 1)l (x, r’)lzdr’>
(187)
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The first term in the equation above is always zero as it is a curl of a gradient. We
again substitute the 1-RDM for a singlet (182) to get

V x % —V x (2111@ /(Vw(r—r’))n(r)n(r’)dr’)

~V x (v; /w(r—r')n(r/)dr/>

=0 (188)

We see that for a two-particle singlet V - (Fy/n) # 0 and V x (Fy/n) = 0. The
latter is what was expected, since from Eq. (183) it was clear that the interaction
force is 1/2 the Hartree-term which is a pure gradient term.

Triplet state

Let us next consider the spin triplet case. The wavefunction is given as
1
®(ry,12) = 7 (@1(r)¢2(r2) — Pa(r)¢1(r2)) © S. (189)

where the spin triplet is S € {|11), %(HL)—{— [41)), [44)}. The particle density is

given as

n(r,t) = |1 (r)[* + [¢a(r) | (190)
The 1-RDM from (160) in this case is given as

Py (1) = g1 (1)1 () + 2 (r)¢5 (r'). (191)

We now evaluate |y (r,r’)|? that will be replaced in the exchange force in Eq. (163)

oy (1 1) 2 = (¢1(091.() + ¢35 (1) g2 (1)) (¢1 (1) ¢ () + p2 (1)5 (1))
= ¢ ()P ¢r () + [ (1) P2 () 2
+¢1(1)91 (1) 93 (1) (x') + ()¢5 ()97 (1) (v')

The interaction force in this case is then given as
Fyy[®]/n = Fu/nt — V/w(r — () dr

—l—znl(r)/(Vw(r—r’))-

(lg1(r) Plon () + |92 (x) P2 (1)

+ ¢1(0)¢1 ()3 (1) P2 (1) + P2 (1) 3 (') 91 (1) 1 (v')) dr’
(192)
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which is again the sum of the Hartree contribution to the force and the other part
is the exchange force.

We now evaluate the curl of F, to check for transverse contribution of the inter-
action force. We already see that the first term in (192) will vanish since this is the
Hartree contribution which is purely longitudinal. Using vector identities we are
left with

F, 1 i,
Vx——zn (Vw(r—1'))

(\¢1< )11 () 2 =+ 2 (x) Pl (x') P + 1 (1) 5 ()3 (1) o (1)
+ ¢2(r)p5 ()¢5 (1)1 (r')) dr’

5 [V i @@ 00 00a(5) + 92015 ()07 (1)
+ PR + 020 PleaP) | x (Vaole ) dr

TZ
+§ / 92629 ("”;Eg'z) < (Veo(e—¢)) df
+ Q/‘PT(T/)%(Y/)V (4)1(;)(%;‘&)) x (Vw(r—r')) dr
)91

L[ ey (LT TR0 ~ (BT
1 ity (TR0 + SOV~ ETUED) 1

2 (1)
1 far(01ontt) (LT 0 VEOI) — DOV ) 1
S PNy (AL LLER LA LR L LU

In general this part is non-vanishing. For instance, if we choose, the instantaneous
orbitals as Gaussians

¢1(r) = sin(2x) sin(2y) sin(ZZ)e_('r‘_z)z/2 (193)
¢2(r) = cos(2x) cos(2y) cos(Zz)e’Mz/z, (194)
the forces Fy/n and the curl of the forces are shown in Figs. 1 and 2, respectively.

We therefore see that indeed already for a triplet state we get transversal exchange
forces.



3.4 TRANSVERSAL EXCHANGE FORCES
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Figure 1: The exchange-force field Fy/n for two particles in two Gaussian orbitals ¢1, ¢»
(triplet state).

Figure 2: The curl of the exchange-force field F,/n for two particles in two Gaussian or-
bitals ¢1, ¢ (triplet state).
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Thus if we use a (TD)CDFT formulation, that is, a KS system including a scalar
and vector xc potential, for the case of an interacting system without a vector po-
tential, we find new contributions. The transversal part then adapts the current of
the KS system to resemble the one from the interacting system. In the ground state
case this has some subtle consequences. The exact interacting system without ex-
ternal vector potential has zero (paramagnetic) current and thus the KS system in-
cluding the xc vector potential should have so as well. Clearly, if the self-consistent
solution including the A, does not have zero paramagnetic contribution, then it is
a violation of an exact constraint. In other words, for the ground state case with
only external scalar potential, one should enforce

V xF,/n=V xF./n. (195)

So we have a consistency condition for the correlation term. This is a new con-
straint in order to improve upon the local-exchange approximation. In the absence
of a correlation part it seems possible to enforce as a side condition, e.g., via La-
grange multipliers or as a penalty term, that V x F,/n = 0. Such a constraint
would include beyond the spin singlet case correlation contributions.

From the observation that already for a spin-triplet situation we will find non-
zero transversal contributions to the exchange forces, we can conclude that this
also holds for the general N-particle case. It therefore becomes interesting to con-
sider to what extend an inclusion of the transversal exchange forces by using
TDCDEFT instead of TDDEFT for the same problem imply. It is to be expected that
a TDCDFT calculation should lead to a better description than a normal TDDFT
simulation in exchange approximation. For the static case, it is to be expected that
the transversality of the exchange forces for situations with no external magnetic
field give us a good way to judge the quality of correlation approximations.



FORCE-BASED APPROACH TO NUMERICALLY CONSTRUCT
DENSITY-POTENTIAL MAPPINGS

So far we have shown that the force-based approach to DFTs is able to connect dif-
ferent settings and provides a straightforward orbital-dependent local-exchange
approximation. To do so we used EOMs and connected the external fields to their
internal control objectives. For instance, the scalar external potential to the den-
sity. Since the various xc potentials are defined as the difference between density-
potential mappings, the EOM-based approach also allows us access to the differ-
ent mappings. This is well known for TDDFT, where the inversion of the EOM
of Eq. (59) allows to find the exact potential for a given initial state and time-
dependent density [146]. However, as demonstrated in Ref. [15], the EOMs can
also be used to numerically construct density-potential mappings in equilibrium.
This becomes specifically interesting in the case where there are no mapping the-
orems available. So one can test numerically whether a possible mapping exists.
Such a question arose in the case of CDFT, where it is so far unclear whether a
Hohenberg-Kohn mapping between the physical current density and the external
vector potential exists. The problem has been circumvented by using the parama-
gentic current instead.

A similar problem arises once we change the setting and consider instead of
continuous real space, a discretized lattice system. Already for the ground state
density, rigorous results are, so far, only available for problems involving tempera-
ture [151]. Going beyond the static density, further quantities have been proposed
to be in a one-to-one relation with an external control field, such as the kinetic en-
ergy density to a generalized hopping or the link current to the Peierls phase [152].
So in this chapter we highlight the potential that the EOM approach has to numer-
ically investigate some of these mappings. For simplicity we will focus on the lat-
tice case, but nothing prevents us fundamentally from using this approach for the
continuum setting as well. The main reason is that numerical investigations even
for simple continuum situations can already be very intricate [146]. Among others,
subtle issues with boundary conditions and numerical representation of contin-
uum operators arise that often need highly specialized treatment [15]. Thus here
we will investigate the mappings between the lattice density and the scalar lattice
potential and between the lattice kinetic energy density and the hopping, respec-
tively, in a setting where the Peierls phase is involved. This distinguishes the fol-
lowing investigations from previous studies [153]. We will also focus on the static
case, since for the time-dependent situation on a lattice, the respective mapping
have already been established by Tokatly [152] and Farzanehpour&Tokatly [154].
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In Sec. 4.1 we introduce the formulation of many-body systems on a lattice and
define the observables of interest that we want to control with some external field.
Then we briefly discuss what different DFTs there are for the lattice setting and the
physical quantities that are involved. In Sec. 4.2 we show how we make use of the
EOMs to numerically investigate the mappings in question and give an example
for each case and provide some outlook.

4.1 MANY ELECTRONS ON A LATTICE

We consider for simplicity a one-dimensional lattice with L sites. To make the
description and the following derivations a little bit more efficient we do not con-
sider specifically only N electrons but we consider the full problem in Fock space.
That is, we work with indefinite number of particles. This avoids to carry along
the particle number explicitly and we can perform very efficient manipulations of
the EOMs. The reason being that we can use the Fermionic creation and annihila-
tion operators that obey anticommutation relations {¢5' ,¢7'} = ¢éoteq — ¢ ¢ot =
Omndse', Where o is again the spin degrees of freedom of the particles. The lattice
Hamiltonian in this case reads

L L 1 L
& i s A0t A0 A0t A0t A0" A0
A=Y Y Tuuemester+y En Cnom+ 5 Yo Y WannmC € e 65
mn=10="1,] m=1o0="1,| mmn=10c,0'=1,]
~————
=y

(196)

The first term can be connected to a finite-difference representation of the Lapla-
cian and describes how the particles can move between sites. The hopping matrix
Tm,n can be interpreted as how easy it is for the electrons to hop from one site to
another. The phase ¢y, is called the Peierls phase and describes the influence of
an external vector potential on the lattice electrons. It is connected to the minimal-
coupling prescription by

n
G = | A~ Al dr, (197)
where A, is the orientation of the connection between site m and 7 in real space
(could be, for instance, along the z direction) and A(r) the external vector po-
tential. The phase hence measures how the vector potential changes when going
from site n to site m. Since T}, is symmetric and naturally we have that Peierls
phase is skew-symmetric ¢, = —¢u,n the whole expression is Hermitean. Per-
turbatively the first term is the equivalent of the kinetic energy for the general
case including magnetic fields (see Sec. 2.3). The second term is the external scalar
potential energy and captures the effect of the scalar potential v,, acting on the
electrons at site m. The last term corresponds to the Coulomb interaction W be-
tween the electrons. Often it is reduced to just a simple on-site interaction, that is,
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Wmnnméﬂézlfé‘;é% — Uéj;réjnéﬂc“}n. This, together with just a next-neighbor hop-
ping matrix T, , gives rise to the Hubbard Hamiltonian.

Similar to the previous chapter, we will consider different settings where dif-
ferent external terms control different observables. The form of these observables,
however, depends on the specific choices we make for T}, ,, and ¢, . In order to be
specific we therefore choose only next neighbor hopping Ty, m+1 = —tm = Tnt1,m
and zero else. We will, however, not assume just one ¢ throughout the lattice but
allow for a site dependent hopping. Because it does not make sense (unless we
would have somehow a change in the topology of our space like in general rela-
tivity) that we have a different form of derivative that changes throughout space,
it only leaves a local change in mass, since the T, , depend on the mass. We will
come back to what we can control with this locally dependent mass in the next
section. Furthermore we choose a periodic setting such that L +1 = 1 and the first
term in Eq. (196) becomes

L
Z Z Tm,nel¢m,n é\gn*é\}'il- — Z (Tm,m+1el¢m,m+l é\gj é\?(’fl’l-i-l + Tm+1,m el(pm+1,m é\gntﬁ—] 6%) .
o=1,l mn=1 m,o

As will become more clear below (see Sec. 4.2 for more details) for this one-
dimensional setting we do not need to have locally changing phases. Indeed, for
an alleged mappings it will turn out to be even detrimental. Hence in the follow-
ing we will only consider a constant magnetic field ¢, ,,+1 = ¢/L. Furthermore,
since we merely want to see the possibility of having a density-potential mapping
for different quantities, we set W = 0 in the following. It will only add further
terms in the EOMs but will not change our conclusions. The final form of the
Hamiltonian for which we will investigate different mappings is therefore

B = = Yt (/T o) 4 Y o, (199)
m,o m

We therefore have the following external parameters in our Hamiltonian that we
want to use to control different quantities: The on-site potential v,, and the site
dependent hopping amplitude t,, and the overall phase ¢.

Let us next identify the quantities we want to control via the different external

parameters. The obvious choice is the (spin-summed) density n,, = (®|,|P),
which is defined by the density operator at site m as
fim = ZCAZ;L@;; (199)
g

In analogy to the continuum case we want to control n,, via the potential vy,.
Taking the time derivative of the density (see App. A for the derivation) leads to
the lattice version of the continuity equation (92) given as

at‘nm =i (Qm,m+1 + Qm,m—l - C~C) . (200)
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The quantity Qm+1 defined on each link is called complex link current den-
sity [152]

Qm,m+1 - Tm,m+1’)’m,m+1~ (201)

It is given in terms of a link density 7, 1 that is the first off-diagonal of the
spin-summed 1-RDM and is defined by

Ymn = Z<q)|'?m,n |(I>> (202)
o

o0  __ a0tac
7m,n = Cp Cy-

The complex hopping is defined as

7 ip/L

Tom+1 = tme (203)

The continuity equation can be obtained, similarly to the continuous case, by tak-
ing the diagonal of the EOM of the 1-RDM (see Eq. (229) in the Appendix). The
EOM of other quantities such as the complex link current can simply be obtained
by the product of the EOM of the 1-RDM with the phase and the hopping. We see
from Eq. (200) that it is the imaginary part of Q11 that enters the continuity
equation and is equal to the physical link current density [, 41

]m,m+1 = ngm,erl/ (204)

which describes the flow of particles from the site m to the site m + 1. The real part
of Qu,m+1 determines the kinetic energy density K, ,,+1 on a link

Km,m-H = 2%Qm,m+l- (205)

The physical link current density is antisymmetric, [;,» = —Ju,m, the link kinetic
energy density is symmetric, K, = K;,,» and the complex current is Hermitean,
Qmun = Qy, u- The continuity equation (200) then takes the form

Oty = — (]m,m+1 + ]m,mfl) . (206)

We will in the following try to control n,, via the scalar potential v, and Ky, ;41
via the hopping amplitude t,,. A further quantity that we potentially can control
i Jmm+1 via the phase ¢. The latter point seems counter-intuitive at first sight.
We note that Eq. (206) for the static case implies that at each link the current den-
sity is the same. We therefore have a constant link current density throughout the
one-dimensional system. We can thus only control the strength of the homoge-
neous current through the periodic system. Dimensionally this value | can then
be connected to the phase ¢. Indeed, varying the phase locally will not modify
the current strength as long as the total phase difference accumulated when going
through the lattice stays the same. This point we will discuss in a little more detail
in Sec. 4.2 . Hence we choose to consider a global phase ¢ which is distributed
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equally over all sites as ¢/L as in Eq. (203) such that summing up all the phases
on the ring yields back the total flux ¢.

Now that we have identified the different quantities that we can potentially con-
trol, let us define the EOMs that relate these quantities and the external potentials.
As we will see in Sec. 4.2 we will make use of these EOMs to check the density-
potential mappings. We have already introduced one of the EOMs, the continuity
equation (206), which is the first order EOM of the density. However we do not
get further information on how to control the density with the scalar potential
from this EOM, because the potential does not appear explicitly. Taking another
time-derivative of the continuity equation, we get the second order EOM of the
density as

a%nm = - (at]m,m+1 - at]mfl,m) (207)

This involves the EOM of the current J,, »,+1, which is the imaginary part of Q, y-+1.
Therefore we choose to first derive the EOM of the complex link current Q,; ;11
and from that we can get the EOM for the physical link current. Knowing from
Eq. (201) how the complex link current relates to the 1-RDM, we make use of the
EOM of the 1-RDM (see Eq. (229) in Appendix A) and get the EOM of Qm+1
simply as

atQm,erl = _itmel(P/Latr)’m,m+1

=1 <<_tmtm—1’)/m—1,m+l + tmtm+l')’m,m+2) ezi('b/L - tgnDJrnm - Qm,m+1D+Um) .
(208)

Here we have introduced the forward (backward) difference operators D, (D)
that act on one-index objects as D f; = fit1 — fi, D—fi = fi — fi_1. We do a similar
derivation for Q,,—1,, (see Eq. (232) in Appendix A) and by taking the imaginary
parts for both EOMs and substituting in Eq. (207) we get the second order EOM
for the density as

0w = —D_ (D4 Yy — 265D 11y — (D10m) K1) (209)

where the term Y, is defined as

Y = Z%Umtmfl’)’mfl,erleZi%)' (210)
This term can be connected to the kinetic stress tensor of Eq. (127) that shows up
in the force balance equation in the previous chapter [152].

The other quantity of interest is the kinetic energy density K. To control K with
the hopping t we need an EOM that gives a relation between these two. An intu-
itive choice is of course the EOM of the kinetic energy density which is the real
part of the EOM of Q (208) and is given as

ath,erl == _D+Em + (DJrUm)]m,erl (211)
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with

[11

¢
= 2%(tmtm,1’ym,1,m+1ez% ). (212)

For ground states the left hand side of Eq. (211) is always zero. Hence this EOM
does not provide a relation between ¢ and K. The EOM of the link current on the
other hand gives us this relation

at]m,m+1 = D+Ym - 2t$nD+nm - (D+vm)Km,m+1~ (213)

We will therefore use this EOM to control the kinetic energy density Ky, ;11 with
the hopping t,,. We could also make use of the 2nd order EOM of the density
given in Eq. (209) since both ¢t and K appear. However, we can see from Eq. (207)
that this is just the forward difference of the EOMs of the link current of Eq. (213).
We see how to determine t,, by inverting Eq. (213) for a specific case in Sec. 4.2
We discuss in Sec. 4.2 how we make use of these EOMs to control the density n
and the kinetic energy density K,, ,,+1 with the scalar potential v and the hopping
t, respectively.

Density functional theories on a lattice

The main difference between the lattice and the continuum case becomes already
evident from the respective continuity equations, i.e., Egs. (44) and (206). Where
in the continuum case we have a local current density, in the lattice case we have a
non-local link current. The same holds true for the force densities, that have been
local in the continuum setting but now become non-local and connect different
sites. This discreteness has certain consequences. Firstly, while in the continuum by
just increasing the flow of particles, we can in principle reach arbitrarily high local
currents, the fact that we have a fixed hopping (at least for the physical interacting
reference Hamiltonian that we want to solve approximately with some lattice DFT)
also limits the maximal value a link current can attain [152]. The same holds true
for the kinetic energy density. We therefore have quite strong v-representability
conditions for [, ,+1 and K, 11 and with this also on the possible changes of
density per site. Again, we can use the 1-RDM to find these constraints on the
link current density and the kinetic energy density. Following Ref. [155] we first
highlight that for every state and for any A € C it holds that

0 < [[(&7, — A& @|* = (@] (&7 — A7) (&, — A | @)
= ’)’ZLm + ’/\’272,11 - A*r)/%,n - A’)’Z,nr (214)
If we the set A = <7, ,/ 7}, we can rearrange the above inequality and find

2
[YVinl™ < YmmVion = Mo (215)

We note that the choice of A is problematic if 7} , = 0. This is easily circumvented
by interchanging the role of m and n if 77, ,, # 0. If both 7}, ,, and 77 , are zero, we
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immediately see that 7, , = 0. From this condition on the 1-RDM we get a bound
for the absolute value of the current J,, ,+1 in Eq. (204) in terms of the densities as

|Jmms1| = 2t|1m{ei¢/L')’m,m+1}‘
< 2tm”)’m,m+1|

<2ty VM1 (216)

In a similar way, the bound for the kinetic energy density K, ,,+1 is

|Knm1] = 2t|Re{ei¢/L')’m,m+l}|
< 2tm|’)’m,m+1‘

< 2t/ A1 (217)

As we have pointed out before, the link current for an eigenstate is homogeneous
throughout the lattice (even when the density is not), and we see from Eq. (216)
that this current is restricted by the minimum over all m of the right hand side
of the inequality. We therefore have for the (homogeneous) current of the ground
state that

J < min2t,,\/Hymh,aa. (218)
m

For the kinetic energy density, which is in general inhomogeneous, we just have
the above local bounds. These results therefore provide representability constraints
and tell us which possible values K, .1, 1, and | can take. Put differently, these
constraints restrict the set of representable densities for which a one-to-one cor-
respondence can exist. For instance, if we consider 4 electrons then no external
potential exists that allows for some site m that n,, > 4.

However, even with these restrictions in mind it is challenging to establish the
fundamental mappings. For instance, already for ground state DFT on a lattice,
the only rigorous mapping established to date is for systems with finite tempera-
ture [151]. The reason being that for zero temperature one does not know under
which conditions a ground state has non-zero density on every site. If the den-
sity is zero on a site, then the potential there does not influence the density and
we have many potentials that lead to the same density. For the continuum case
one can rely on results from functional analysis that guarantee that the density
is non-zero everywhere [146]. This makes an investigation of the mapping even
for simple lattice systems interesting. For more complex observables such as the
kinetic energy density the situation is even more involved. Since the kinetic energy
density K,, 41 contains the control potential, in this case the site-dependent hop-
ping t,, we can no longer use the simple proof strategy of Hohenberg and Kohn.
This relies on a linear relation between the functional variable and the control po-
tential [153]. We have, however, indication that a mapping between Ky, ;1 and t,,
exists. This is based on the EOMs and their use in the time-dependent lattice set-
tings. For instance in lattice TDDFT, Farzanehpour and Tokatly [154] have proven
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that regardless of the geometry or size of the lattice there exist a unique map-
ping vy, (t) — ny,(t). Similarly a "generalized TDCDFT" for the lattice is presented
in [152] where the basic variable is the complex link current Q,, ,,+1(t) and it is
proven that the mapping (Quum+1(t) = Tyms1(t)) is unique. In this same work,
the usual TDCDFT is also established between the physical link current and the
Peierls phase under certain conditions. One of which is related to the bound of the
link current which we discussed above. Assuming that such mappings exist also
for the static case, we can of course still make use of the EOMs to define approxi-
mations to the xc potentials as we did in the previous chapter. However, here we
instead make use of the EOMs in a different capacity to investigate whether such
mappings exist also in the static case. This approach has been used in Ref. [153] to
numerically investigate the mapping between the set of densities (1, Ky m+1) and
the potentials (vy,, ). In our case we make use of the EOMs for the Hamiltonian
of Eq. (198), which also includes a Peierls phase in contrast to Ref. [153], and check
numerically whether the density and the kinetic energy density are controlled by
their conjugate external potentials. In other terms, we investigate whether one-to-
one correspondences between n,, and v, and K, ,,4+1 and t,,, respectively, exist. We
also comment on the controllability of the link current or all these objects together
at once.

4.2 CONSTRUCTION OF DENSITY-TO-POTENTIAL MAPPINGS

As we stated above the EOMs give an exact relation between possible sets of den-
sities and potentials. In this section we investigate the one-to-one correspondence
between the particle density n,, and the scalar potential potential v;, for the lattice
configuration described by Eq. (198) by employing the second order EOM of the
density. Furthermore we investigate the mapping between the kinetic energy den-
sity Ky, m+1 and the hopping t,, by making use of the EOM of the link current to
establish the relation between these two quantities.

It is clear that the forward mappings v, — n,, and t,, — Ky, 11 exist by solving
the ground state problem. What we want to investigate is whether also the inverse
mappings 1, — vy and Ky, 41 — t, exist. This would imply that the v, — ny,
and t,; — K, ;41 mappings are invertible and hence one-to-one. In order to in-
vestigate this we choose some arbitrary values for n,, and Ky, ,,+1 that fulfill basic
representability conditions and then try to construct the correspond v,, and t,, nu-
merically. We will do so by an iterative procedure. To start the iterative procedure

we make an initial guess v,ﬁ? ) or t,g? ), respectively. It is helpful to adhere the above

representability conditions for the initial guess for if,(nO ),
1. We then solve the ground state problem with one of the corresponding guess
put into Eq. (198). From this we get a ground state ®(*) and the correspond-

ing quantities n,(,? ) or K

mm1, Tespectively
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2. We then use the EOMs (see details below) to update to a new potential 0,33 )

or hopping tg,} ), respectively.

(1)

3. We then solve the ground state problem with the new control fields v,,’ or

tﬁ,} ), respectively.

We repeat these steps until the control fields v,gi) — v,(qiﬂ) or t,(é) — t£é+1), respec-
tivelyno longer change. We will discuss further details and the results below. Fur-
thermore we comment on inverting the phase-to-current mapping and controlling
all objectives at once.

Iteration procedure for n,, — v, mapping

To have a density that is potentially v representable we have to obey certain min-
imal conditions. Firstly, if we consider only N particles, then ), n,, = N has to
hold. Further, we only consider densities that obey 7n,, > 0 on the whole lattice.
To avoid any problems we can just generate some densities 1,, by some arbitrary
potential and see whether we get back the same potential we started with. This
also indicates a one-to-one relation. Given such a density we then use Eq. (209) to
find the corresponding potential for a fixed Ty, 11 = tme/L. We do so by making
an initial guess for the potential vﬁ,? ) on all sites and proceed as discussed above.
We note that we have a gauge freedom here and fix only L — 1 of all L sites, since
we can just add a constant to the potential without changing the physics. This is
exactly the same gauge freedom as discussed in Sec. 2.1.2.

Given that the number of particles is fixed by the sum of occupations at every
site, the statement ), ii,, = 0 is valid. Therefore there are only L —1 EOMs for the
density that are non-trivial and from which we get an update for the potentials.
However, with the above gauge condition the number of non-trivial potentials is
also L — 1 such that everything fits and the potential on the Lth site can be fixed
to a constant, for instance the initial guess U(LO). To be explicit, let us take as an
example for the inversion scheme the four site case (other explicit cases are given

in App. A.1). We use three of the EOMs to get an update for the potentials at three
(

sites while the potential v; is fixed to our initial guess 010) (we use Ky, = Ky m+1
to not overload notation),

ot —(B+ DYORIKE — BOKDKD + AOKIKS 40,0

Z)Z = -
c()
i _ —(AF BRI + AVKYKS — DOKPKS — (B+ D) VKK + 0nC0
3 c(@
o _ (A+B+ D)IKPKS + (4 + B)VKIKY + AVKPKS +0,C10)
C) ’

(219)
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We solve the three EOMs and obtain the update formulae (219) where A, B, C and
D are

A(l) = (YZ — Y])m — Zt%(nz — 1’11) — (Yl ) t (Yll — Tl4)
= (Y2 —2Y1 + Y4)( 0 _ 2t2(n2 —ny)+ 2t4(n1 —ny) (220)

B(Z) = (Y3 — Yz)(i) — Zt%(n3 — nz) (Yz — Yl) + 2f (1’12 — nl)
= (Y3 —2Y5 + Yl)(i) — 21‘%(713 — 7’12) + Zt%(nz 7’11) (221)

D(Z) = (Y4 — Y3)(i) — 2t§(1‘l4 — Tl3) — (Y3 — )(Z) —+ 2t (7’13 — nz)
= (Y4 —2Y3+ Yg)(’) 2t§( ny —n3) + 2t2(n3 —ny) (222)
C) = ((K1K + K1 K3 + KoK3)Ky + K1 KoK3) ) (223)

and
i i i?

YSH) = 2§)‘ﬁ(tmt,,,_lfy,(ﬂ)_LmHe2 L). (224)

In every step of the iteration scheme, the density n,, is fixed to that of the target
system while the other quantities K,Y are updated by solving the ground state
problem with the scalar potentials v/, from the previous iteration. This is repeated
until the calculated densities converge to those of the target system (see App. A
for details)

As an example we show the numerical results for this inversion scheme for
four sites in Figure 3 (see details of the reference system in the caption) which
we compare to the target system. The densities and the control field v, of the
target system are plotted in blue while the red plots correspond to the converged
potential and densities. As an initial guess for the potential we take v, = 0.1 . We
see in Figure 3 that the target potential and the converged potential differ purely by
a constant shift. This is simply because the potential at site 1 is fixed to our initial
guess vgo) = 0.1. The density we get upon convergence agrees with the target
density. To highlight that we indeed got back the same wave function we also
plot the kinetic energy density and the current density, which are not determined
by the density. As we see all converged quantities are indistinguishable on the
displayed scale from the reference quantities.

This result is representative for the different situations (changing N, L and the
target densities as well as the hoppings and phases or initial guess) that we inves-
tigated. For two sites with N = 2, v,, = sin(#™), t,, = sin(#2) and ¢/L = /4
and also for three sites with N = 4, v,, = sm(2”m) +0.1, ty = cos(?) and
¢/L = m/4. Numerically we find that as long as the density is non-zero at every
site we can uniquely reconstruct the corresponding potential and with this also
the exact wavefunction. It is, however, unclear whether for all reasonable lattice
Hamiltonians the reverse holds. That is, that under which conditions the ground
state of a Hamiltonian on a lattice has non-zero density everywhere. To guarantee
a one-to-one relation a characterization of these conditions will become important.
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potentials

#sites
densities

Figure 3: Inversion of the density n for N = 6 particles on L = 4 sites. The reference
systems potential is v = sin(2), the hopping is t = cos(?) + 1.1 and the
phase is ¢ /L = 71/3. The upper plot shows the target scalar potential (solid blue
line) and the updated (converged) scalar potential v° (dashed red) against sites
m. Up to an inconsequential shift they are the same. The lower plot shows the
target density n (solid blue line), the densities K (dashed blue line), | (dashed
dotted blue line) and the corresponding densities n°, K%, J° at convergence (in
red).
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Iteration procedure for K, ;1 — t,, mapping

Next we fix v, and ¢ and adopt t,, to generate a prescribed kinetic energy density.
Knowing that the EOM (213) is equal to zero we get indeed a simple update
scheme for the hopping t,, as

0 4 — 8D, n} Div
D) \/ﬁ *()m Ko, 1D+ O (225)
4:D+1’lm
. ) 2it
Bl = 2R ((tm—l’}’m—l,m—H — tw1Ymmi2)") EZZL) : (226)

We choose the hopping positive to avoid potential gauge ambiguities [153] and
(1) that we obtain with both t(lH) of the

+ solutions in (226) and choose the hopping that gives K,S1 Y closer to that of

the target system. In every step of the iteration scheme to update the hopping
(i+1)
tm

in every iteration we compare the Ky,

, the kinetic energy density is fixed to that of the target system while the

density n) and reduced density matrix ’y,(,?n are updated by solving the ground

state problem with the hopping t,g? evaluated in the previous iteration. From the
denominator of Eq. (226) we see that our update scheme is restricted to systems
with inhomogeneous densities. For homogeneous systems we would need to use
a different relation between K and t¢.

Again we give an explicit example for L = 4 (see details of the reference system
in the caption). The initial guess for the hoppings are t,g? ) = 1.In the upper plot
of Figure 4 we see that the converged hopping (dashed red) agrees nicely with
the reference hopping (solid blue). In the lower plot we display besides the kinetic
energy density (dashed blue and red lines) also the density (solid blue and red)
and the current density (dashed dotted blue and red) of the target system (blue)
and the converged quantities (red). We find that the EOM inversion recovers the
exact quantities.

Again the presented result is representative for the different situations that we
investigated. With the current update scheme we can uniquely reconstruct the
reference wave function and the corresponding quantities as long as the system
is inhomogeneous. If the density becomes the same on two consecutive sites our
method becomes unstable. Yet we do think that by either using different EOMs
to find a relation between t and K or by even ad-hoc methods like in the case of
density-potential inversions [156] that increase the hopping where the K() is too
small, might overcome this problem. We do not think that for these cases there
is not a one-to-one correspondence in general. As an example see the explicit
inversion for the fully homogeneous system in Ref. [153].

These two examples highlight that the EOM approach is also interesting to es-
tablish or investigate basic facts of DFTs. Even for lattice DFT at zero temperature
basic questions about the existence and the properties of the density-potential
mapping are unanswered [151]. We can think of investigating not only the indi-
vidual mappings n,, — v, and Ky, ,,+1 +— t, but also to the combined mapping
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Figure 4: Inversion of the kinetic energy density K for N = 6 particles on L = 4 sites.
The reference system is given by the hopping t = cos(znTm) + 1.1, the scalar
potential v = sin(#) and the phase ¢/L = 7/3. In the upper plot we show the
reference hopping (solid blue) and the updated (converged) hopping t* (dashed
red). against sites m. The lower plot shows the target kinetic energy density K
(dashed blue line), density n (solid blue line), the current | (dashed dotted blue

line) and the corresponding densities n°, K*, J* at convergence (in red).
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(M, Kypns1) — (Om, tm) as done for the case without the Peierls phase in Ref. [153].
Especially interesting in our setting is if we can even control (#,,, Ky m+1,]) at the
same time and with this basically fix all parts of the Hamiltonian uniquely. The
control of the current and its connection to the Peierls phase has also implications
for the continuum setting and CDFT with the physical current. Firstly, even in
the continuum case we will have only a homogeneous current if we are in only
one-dimension. This becomes obvious from the continuity equation (44) for one
dimension, where having a static density implies that the current is constant. So
also in the continuum, for one spatial dimension we have many inhomogeneous
fields A(x) that will generate all the same static current. So we have also in this
case restrict the possible control fields to just a number to establish a possible one-
to-one relation. For two and three-dimensional lattices we expect to find a map-
ping between all possible ring currents (we still have the rule that everything that
flows in also flows out due to the continuity equation) and corresponding phases.
Similar to the continuum, where the continuity equation only allows transversal
currents for static states. Investigating this sofar elusive setting numerically and
see whether we can control the transversal part of the full physical current is a
very interesting opportunity to employ the EOM-based approach and to construct
potentials for a given density and transversal current.



CONCLUSION AND OUTLOOK

In this thesis we have reviewed some challenges that arise in the ab-initio de-
scription of many-electron systems and to address this we have proposed a novel
promising approximation scheme for density functional theories.

In the first chapter, we addressed four important settings commonly considered
in many-body quantum mechanics to study the structure and dynamics of matter.
We discussed some density functional methods that have been developed to solve
many-body systems in these various settings, namely, (TD)DFT and (TD)CDFT
and their respective approximations. Despite being successful methods some limi-
tations arise for instance due to the standard energy-based approach to determine
xc potentials and the possible deficiencies that arise from using ground state func-
tional approximations in other settings.

In chapter 3, we presented a way to treat these issues by introducing an ap-
proach to determine xc potentials of these different DFTs based on the EOMs
of specific current densities rather than resorting to the usual minimum energy
principle or energy expressions. These EOMs describe many-body systems in a
hydrodynamic manner as a balance of forces in the systems. From this we were
able to show that by employing the usual KS formulation, instead of approximat-
ing the energy functionals what we need to approximate are these forces. In this
way we have established exact determining relations for xc potentials that give
way to orbital-dependent approximations. This approach has some advantages as
it avoids not only functional differentiability issues but also the numerically costly
optimized-effective-potential procedure to determine xc potentials. As such the
EOMs provide approximations directly on the level of the potentials. The nov-
elty of this approximation scheme is that it unifies various DFT settings via the
EOMs. As such we need not only follow the standard way of using ground state
approximations for time-dependent settings but we actually show that the reverse
is possible and in general one can indeed connect different DFT settings(with or
without (time-dependent) magnetic fields) to improve on the xc potentials. We
have highlighted this connection for local-exchange approximations for (TD)DFT
and (TD)CDEFT by showing, for instance, differences between ground-state DFT
and TDDFT arising from the transversal contribution to the local forces as well
as the gauge-fixing due to the Helmholtz decomposition that separates the scalar
and the vector xc potential. To further highlight this connection and its benefits,
we made use of the (TD)CDEFT formulation to treat an interacting system without
magnetic field and found that transversal contributions to the exchange force arise
even for the simple case of a triplet state. This led to a new condition to improve
on the local-exchange approximation in the static case. Although by avoiding the
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usual energy expressions, the connection between the presented local-exchange ap-
proximations and the standard energy-based approximations is not clear a priori,
we however showed that for a homogeneous system, these approximations reduce
to the usual exchange LDA and even pointed out how it intuitively connects to
the Xa method.

In Chapter 4 we showed the capacity that this EOM-based approach has to nu-
merically investigate fundamental mapping theorems in DFTs. For the simple case
of a one dimensional lattice system in a ground state setting with Peierls phase,
we were able to establish numerically that there is a one-to-one correspondence
between densities and scalar potentials given that the density is non-zero at ev-
ery site. Similarly, we also showed numerically that there is a one-to-one mapping
between kinetic energy densities and hoppings as long as the system is inhomo-
geneous, but other tactics can be used to make this true in general. This shows
that the EOM-based approach to DFTs are of a great advantage in numerically
constructing potentials for given sets of densities, particularly for cases where the
mapping theorems are non-existent. Following the inversion schemes established
for the one-dimensional lattice system, an interesting next step will be to investi-
gate the mapping of all three quantities n,,, K;;, | simultaneously. It will also be
useful to follow this EOM-based approach to numerically investigate the possibil-
ity to construct potentials for a given density and the transversal part of the full
physical current in the cases of two and three-dimensional lattices.

The insights presented in this thesis is a good starting point for further inves-
tigations and provides a pathway to future interesting applications. A next in-
teresting step is trying to find approximations also to the correlation part of the
xc potentials. One possible route is to get expressions for the force terms Fr[¥]
and Fy[¥] in terms of explicit approximations of the involved reduced quanti-
ties, 1-RDM and diagonal of the 2-RDM, and make use of auxiliary equations
that determine these quantities [157]. Furthermore, since we have seen how us-
ing TDCDEFT for a static problem with no magnetic field has led to transversal
contributions in the exchange force, it will be beneficial to explicitly investigate
and compare how this differs if we instead used TDDFT. In that sense, one can
compare the quality of the correlation approximations. While we have now pre-
sented the EOM-based approach only for purely fermionic systems, this could be
straightforwardly extended to other settings such as coupled electron-photon sys-
tems to establish defining relations for xc potentials in the framework of quantum
electrodynamical DFT (QEDFT) [158-161].

We have thus presented here an approximation scheme which, on the same
level of accuracy, allows one to switch between various situations in a consistent
manner and capture significant features that are often missed out in the standard
approach to DFTs. This unifying framework will therefore be a great tool to study
the qualitative change in the properties of the same system, such as a molecule or
solid state system, when exposed to different external perturbations or situations
and in general this will provide a better understanding of material properties.



EQUATIONS OF MOTION ON THE LATTICE

Here we show the derivation of the EOMs that we used in the lattice setting to do
the numerical inversion schemes of the density and the kinetic energy density. We
start with the EOM of the 1-RDM and show how from this we derive other EOMs
that will be used to numerically investigate one-to-one mappings between densi-
ties and potentials. We further show two more examples for the inversion of the
the density. We later on discuss some technical details about the implementation
of the inversion scheme.

A.1 EOM OF THE DENSITY

We start with the EOM of the 1-RDM (202) and obtain further the EOMs for the
density and the link current. For a non-interacting Hamiltonian of the form (198)
the EOM of an arbitrary time-independent operator O is given by

0,0 =i(® [H,0] ) (227)

where @ is again the Slater determinant wavefunction for the ground state. Based
on the usual commutation relations we use

A0t A A0t A0 A0t a0’ Nk N

[Ck Chtar CI Cl+b] = 000/ Ok +a1Ck Crip — 0000k 14bC1 " Chia- (228)

in our derivations of the EOMs. For the 1-RDM (202) we then obtain the EOM as
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- tme_igb/L'Ym-i-l,n + tn—le_iqj/L’)’m,n—l — Ymn (Um - Un) (229)

To get the first order EOM of the density which is the continuity equation (200),
we use the diagonal of the EOM for the 1-RDM since 1,, = y,» and we get
atnm — l (tmei¢m,m+1r)/m/m+1 + tmei¢nl,M71,YMIM71 _ C.C)

= i(Qm,m-H + Qm,m—l - C-C)
= _(]m,m+1 + ]m,m71>- (230)

We further derive the second order time derivative of the density as this will be of
use in our inversion scheme to update the potentials. Thus from (230) we have

a%nm = (at]m,m-i-l + at]m,m—l)
= - (at]m,erl - at]mfl,m) (231)
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which we can write as afnm = —D_0d;J;;. We have derived 9;],, from the EOM of
Qmm+1 in (252). What we need to get is d;],,—1 which we obtain as 230:Q—1,m =
23(Ty—1,m0tYm—1,m)- Making use of Eq. (229) we first get 9:Qy—1m

_iat(Tm—l,m’Ym—l,m)

- (_tmfltm—Z')’m—Z,m + tmfltm')’mfl,mqtl) e

- ti (nm - ”mfl) - mel,mevm

2ip/L

= (tmtmfl')’mfl,mfl - tmfltm—Z')’m—Z,m) eZi(])/L
- tiDJrnmfl + Qm,mleJrUmfl (232)
From this we obtain the EOM of 0;],,—1, as
OtJm—1,m = D+ Y1 — 2t3nD+nm—1 — Kiy—1,mD+0m—1 (233)

where Y; has been defined in (253). Thus the second order time derivative of the
density afnm from (231) is given as

Oy = —D_ (D4 Y — 262, D 1y — (D10y) Ky (234)

As we discussed in Sec. 4.2 only L — 1 EOMs are non-trivial. Hence to update the
potentials we make use of L — 1 of the equations and one of the potentials is fixed
to our initial guess. We make use of Mathematica to solve these EOMS. Then we
update every term except t,n and ¢. Following we derive the update formulae of
the potentials for two, three and four sites.

For 2 sites

From the EOM (234) we can do inversion of the density for two sites by obtaining
first the update formula for the potential. Knowing that (234) must yield zero in
the ground state case, we have for two sites

dtng = —D_ (D4 Yo — 2t5D g — (D+v9)Kg) =0

D. Yo — 23D ny — (D1vg)Ko — Dy Y1 + 262D ny + (D1v1)K; =0

(Yl — Yo) — 21%(711 — 7’10) — (01 — UQ)KO — (Yo — Y1) + 21‘%(1’10 — 7’11) + (Z)o — U1)K1

Z(Yl — Yo) — Z(f% + t%)(ﬂl — 1’10) — (Z)l — UQ)(KO + Kl) =0

S _ 2(Yo — Y1) +2(8 + £) (11 — no) + (Ko + Kl)(i)vo. (235)
1 Ko + K3

For 3 sites

We now construct the same scheme for L = 3 sites. From the 2nd order EOM of
the density we have

a%no = (Yl - Yo) — Zt%(i’ll — 1”10) — (’01 - Uo)KO — ((YO - Yz) — Zt%(i’lo - 1’12) — (’UO - ’Uz)Kz)
3%1’11 = (Yz — Y1) — Zt%(i’lz — 111) — (7)2 — Ul)K1 — ((Y1 — Yo) — Zt%(nl — Tl()) — (Ul — Uo)KQ)
8%1’12 = (Y() — Yz) — Zt%(no — le) — (Uo — UQ)KZ — ((Yz — Yl) — Zt%(nz — Tl1) — (Uz — Ul)Kl)
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(236)
We get the update for v; and v; in terms of vy as
. (gD _ g 4 c)
(i+1) _ AVK 2 +CYy
Y1 = Ial0) (237)
; A-+B (Z)K(l) A(Z)K(Z) (i)
vgﬂ):( B)TKy” + ATK + C oo (238)
c(@)
where A, B, C are simply
(Yl ) ZtO(m l’lo) ( Yz) + Zt%(l’lo — 1’12)
= (Y1 —2Yo + Y2)D — 282 (ny — ng) 4 23(np — n2) (239)
= (Y2 Y, ) 2t2(n2 — 711) ( Yo) + ZtO(Tll — no)
= (Yo —2Y1 + Y0) D — 28 (ny — ny) 4 23 (ny — o) (240)
= (KoK; + KoKy + K1 Kp) ) (241)
For 4 sites
From the 2nd order EOM of the density we get for 4 sites
8%1’10 = (Yl — YO) — 21%(1’11 — TZQ) — (Ul — Uo)K() — ((YO — Y3) — 2t§(1’10 — Tlg) — (Uo — 03)K3)
oty = (Yo —Yy) — 2t5(n2 — mq) — (v2 — 1)Ky — ((Y1 — Yo) — 2t§(1n1 — ng) — (v1 — v9)Ko)
a%nz = (Y3 — Yz) — Zt%(ng, — nz) — (1)3 — Uz)Kz — ((Yz — Yl) — 21%(7’12 — 1‘11) — (Z)Q — Z)l)Kl)
6%7’13 = (Yo — Yg) — 21%(7’10 — Tl3) — (UO — Ug)Kg — ((Y3 — Yz) — Zt%(i’lg — nz) — (03 — Uz)Kz)
(242)
Making use of 3 of the above EOMs and Mathematica we get the potentials as
i) —(B+D)DKYK — BOKI K + AOKIK 4 0yC®
U = cli) (243)
) _ A+ BRI AOKIKE _ DRI — (54 D)KL 4 ot
2 = cl
(244)
li+1) _ (A+ B+ DYOKTKY 4 (A4 BOKYKG + AVKKS) + 0 CO
c@)

(245)
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where A, B,C and D are

= (Y1 — Yo) — 265(n1 — 1) — (Yo — Y3) 4 2t5(n9 — n3)

= (Y1 —2Yo + Y3) — 262 (ny — ng) + 263 (no — n3) (246)
= (Y2 — Y1) =283 (na — n1) — (Y1 — Yo) +2t5(n1 — np)

= (Y2 —2Y; + Yo) — 28 2(ny —ny) +2t5(ny — np) (247)
= (Y3 —Y2) —265(n3 — np) — (Y2 — Y1) + 283 (ny — my)

= (Y3 —2Y2 + Y1) —283(n3 — ny) + 263 (ny — my) (248)

= (KoK + KoKz + KiK2)K3 + KoK Ky) " (249)

A.2 EOM OF THE CURRENT

We now derive the EOM of the link current Q,, ,+1, as we will need it to show the
mapping between the kinetic energy density and the hopping in Sec. 4.2. We start
with the EOM of the complex link current since its imaginary part gives us the
link current. Knowing how the complex link current relates to the 1-RDM (250)
we make use of the EOM of the 1-RDM to get that for the complex link current

_iatQm,m—H = _iTm,m—&-lat’Ym,m-i-l
i iy 1
= tye Pmam1 (_tmfle Pm—1m Ym—-1,m+1 T tmy1€ ¢m+l’m+27m,m+2
_tmeupmﬂ’mDﬁan - 'Ym,m—‘rlDJrvm)

i?
= <_tmtm—17m—l,m+l + tmtm+1')’m,m+2> AT — tan+nm - Qm,m+1D+Um-
(250)

We get the EOM of link current knowing the relation (204)

at]m,m—H = 2%atQm,m+l
= 2R (—i0;Qumi1) (251)

which from (250) becomes
OtJmmi1 = DY — 265, Dy 1ty — (D10) Ky (252)
and Y,, reads
Yo = 2R (busty—1 Vi1 m1€% L), (253)

In a similar manner we get the EOM for the kinetic energy density knowing the
relation (205)

ath,m—i-l = 2§RatQm,m+1
= 29 (—i0;Qums1) (254)
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which from (250) becomes

ath,m—i-l =-D 5, + (D+vm)]m,m+1 (255)
where

- i?

S = zg(tmtm—l')/m—l,m—i-leZlL )- (256)

A.3 FURTHER DETAILS OF THE INVERSION SCHEME IMPLEMENTATION

In Sec. 4.2 we discussed how to numerically investigate the one-to-one mapping
between densities and potentials by making use of suitable EOMs. Here we give
some details about the numerical implementation of these inversion schemes. We
make use of the eigensolver "linalg.eigh" in Python 3.5 to diagonalize the Hamil-
tonian (198) and solve the ground state problem.

Initial value of control fields v and ¢

To do the inversion of n and K respectively, we follow the self-consistent iteration
scheme discussed in Chap. 4. For this we need an initial value for the control
fields in each case. For the inversion of the density n discussed in the main text

we choose as initial potential 05,9 ) = 0.1. For the the inversion of the kinetic energy

density K the initial hopping is set to t,(;l) )= 1.

Convergence criteria

To determine that the self-consistent scheme has converged we check that the norm
of the difference between the target density and the updated density in each case
is less than a very small number €. In our algorithm we have chosen ¢ = 107%.
For this convergence criterion the inversion of the density n and that of the kinetic
energy density K converges after about 50 iterations.
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ACRONYMS

1-RDM one-body Reduced Density Matrix

2-RDM two-body Reduced Density Matrix

ALDA Adiabatic Local Density Approximation
CDFT Current Density Functional Theory

DFT Density Functional Theory

EOM Equation Of Motion

GGA Generalized Gradient Approximation

Hxc Hartree-exchange-correlation

KS  Kohn-Sham

LDA Local Density Approximation

RG Runge-Gross

TDCDFT Time-dependent Current Density Functional Theory
TDDFT Time-dependent Density Functional Theory

xc  Exchange Correlation
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